首页> 外文期刊>IEEE Transactions on Cognitive and Developmental Systems >A Novel Brain Decoding Method: A Correlation Network Framework for Revealing Brain Connections
【24h】

A Novel Brain Decoding Method: A Correlation Network Framework for Revealing Brain Connections

机译:一种新型大脑解码方法:一种揭示脑连接的相关网络框架

获取原文
获取原文并翻译 | 示例

摘要

Brain decoding is a hot spot in cognitive science, which focuses on reconstructing perceptual images from brain activities. Analyzing the correlations of collected data from human brain activities and representing activity patterns are two key problems in brain decoding based on functional magnetic resonance imaging signals. However, existing correlation analysis methods mainly focus on the strength information of voxel, which reveals functional connectivity in the cerebral cortex. They tend to neglect the structural information that implies the intra-cortical or intrinsic connections; that is, structural connectivity. Hence, the effective connectivity inferred by these methods is relatively unilateral. Therefore, we propose in this paper a correlation network (CorrNet) framework that could he flexibly combined with diverse pattern representation models. In the CorrNet framework, the topological correlation is introduced to reveal structural information. Rich correlations can be obtained, which contribute to specifying the underlying effective connectivity. We also combine the CorrNet framework with a linear support vector machine and a dynamic evolving spike neuron network for pattern representation separately, thus provide a novel method for decoding cognitive activity patterns. Experimental results verify the reliability and robustness of our CorrNet framework, and demonstrate that the new method can achieve significant improvement in brain decoding over comparable methods.
机译:脑解码是认知科学的热点,专注于重建从脑活动中的感知图像。分析来自人脑活动的收集数据的相关性,代表活动模式是基于功能磁共振成像信号的脑解码中的两个关键问题。然而,现有的相关性分析方法主要关注体素的强度信息,这揭示了脑皮层中的功能性连接。它们倾向于忽视意味着皮质内或内在连接的结构信息;也就是说,结构连接。因此,这些方法推断的有效连通性相对单侧。因此,我们在本文中提出了一种相关网络(CORRNET)框架,其可以灵活地结合不同的模式表示模型。在CORRNET框架中,引入了拓扑相关来揭示结构信息。可以获得丰富的相关性,这有助于指定潜在的有效连接。我们还将CORNET框架与线性支持向量机和用于分别的模式表示的动态演化尖峰神经元网络组合,从而提供了一种用于解码认知活动模式的新方法。实验结果验证了我们的CORNET框架的可靠性和鲁棒性,并证明了新方法可以在可比方法中实现大脑解码的显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号