首页> 外文期刊>IEEE Transactions on Cognitive Communications and Networking >Centralized Power Control in Cognitive Radio Networks Using Modulation and Coding Classification Feedback
【24h】

Centralized Power Control in Cognitive Radio Networks Using Modulation and Coding Classification Feedback

机译:使用调制和编码分类反馈的认知无线电网络集中功率控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a centralized power control (PC) scheme and an interference channel learning method are jointly tackled to allow a cognitive radio network (CRN) access to the frequency band of a primary user (PU) operating based on an adaptive coding and modulation protocol. The learning process enabler is a cooperative modulation and coding classification (MCC) technique which estimates the modulation and coding scheme of the PU. Due to the lack of cooperation between the PU and the CRN, the CRN exploits this multilevel MCC sensing feedback as implicit channel state information of the PU link in order to constantly monitor the impact of the aggregated interference it causes. In this paper, an algorithm is developed for maximizing the CRN throughput (the PC optimization objective) and simultaneously learning how to mitigate PU interference (the optimization problem constraint) by using only the MCC information. Ideal approaches for this problem setting with high convergence rate are the cutting plane methods (CPM). Here, we focus on the analytic center CPM and the center of gravity CPM whose effectiveness in the proposed simultaneous PC and interference channel learning algorithm is demonstrated through numerical simulations.
机译:在本文中,联合解决了集中式功率控制(PC)方案和干扰信道学习方法,以允许认知无线电网络(CRN)访问基于自适应编码和调制操作的主要用户(PU)的频带协议。学习过程使能器是一种协作调制和编码分类(MCC)技术,用于估计PU的调制和编码方案。由于PU与CRN之间缺乏协作,因此CRN利用此多级MCC感知反馈作为PU链路的隐式信道状态信息,以便不断监视其引起的聚集干扰的影响。在本文中,开发了一种算法,该算法可最大化CRN吞吐量(PC优化目标),同时仅通过MCC信息学习如何减轻PU干扰(优化问题约束)。具有较高收敛速度的解决此问题的理想方法是切割平面方法(CPM)。在这里,我们集中于解析中心CPM和重心CPM,它们通过数值模拟证明了在提出的同时PC和干扰信道学习算法中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号