首页> 外文期刊>IEEE Transactions on Cognitive Communications and Networking >Efficient Hybrid Multi-Faults Location Based on Hopfield Neural Network in 5G Coexisting Radio and Optical Wireless Networks
【24h】

Efficient Hybrid Multi-Faults Location Based on Hopfield Neural Network in 5G Coexisting Radio and Optical Wireless Networks

机译:基于Hopfield神经网络的5G共存无线电无线网络有效的混合多故障位置

获取原文
获取原文并翻译 | 示例

摘要

Rapid evolution of 5G mobile network has prompted the design of more reliable service assurance mechanism for radio and optical wireless networks. It has been a crucial issue of network operation that once multiple failures occur simultaneously, more users will be affected and the transmission of real-time services cannot be guaranteed. Therefore, rapid locating of faults is the premise for network to recover quickly. However, current faults location methods can't satisfy the requirement due to the expansion of network scale and the complexity of topological connection in 5G and beyond scene. In this paper, we propose an efficient hybrid multi-faults location algorithm based on Hopfield Neural Network (HNN) in radio and optical wireless networks. We make full use of the information of network topology and the services transmitted to model the relationship between fault set and alarm set. HNN is used as an optimization method to analyze the uncertainty of faults and alarms and to find where the faults most likely occur by constructing a proper energy function. It has been proved by simulations that this method has a fast convergence and can achieve real-time faults location while ensuring positioning accuracy.
机译:5G移动网络的快速发展促使为无线电和光学无线网络设计更可靠的服务保证机制。它一直是网络运行的重要问题,一旦多次失败同时发生,更多的用户将受到影响,无法保证实时服务的传输。因此,缺口的快速定位是网络快速恢复的前提。然而,由于网络规模的扩展和5G及更远的场景中的拓扑连接的复杂性,当前故障定位方法无法满足要求。本文提出了一种基于无线电无线网络中Hopfield神经网络(HNN)的高效混合多故障定位算法。我们充分利用了网络拓扑的信息和传输的服务来模拟故障集和报警集之间的关系。 HNN被用作优化方法,分析故障和警报的不确定性,并找到最可能通过构造适当的能量功能而发生的故障。通过模拟证明,这种方法具有快速收敛性,并且可以在确保定位精度的同时实现实时故障位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号