首页> 外文期刊>IEEE Transactions on Cognitive Communications and Networking >Deep Reinforcement Learning for Adaptive Caching in Hierarchical Content Delivery Networks
【24h】

Deep Reinforcement Learning for Adaptive Caching in Hierarchical Content Delivery Networks

机译:分层内容交付网络中自适应缓存的深度加强学习

获取原文
获取原文并翻译 | 示例

摘要

Caching is envisioned to play a critical role in next-generation content delivery infrastructure, cellular networks, and Internet architectures. By smartly storing the most popular contents at the storage-enabled network entities during off-peak demand instances, caching can benefit both network infrastructure as well as end users, during on-peak periods. In this context, distributing the limited storage capacity across network entities calls for decentralized caching schemes. Many practical caching systems involve a parent caching node connected to multiple leaf nodes to serve user file requests. To model the two-way interactive influence between caching decisions at the parent and leaf nodes, a reinforcement learning (RL) framework is put forth. To handle the large continuous state space, a scalable deep RL approach is pursued. The novel approach relies on a hyper-deep Q-network to learn the Q-function, and thus the optimal caching policy, in an online fashion. Reinforcing the parent node with ability to learn-and-adapt to unknown policies of leaf nodes as well as spatio-temporal dynamic evolution of file requests, results in remarkable caching performance, as corroborated through numerical tests.
机译:设想缓存以在下一代内容交付基础架构,蜂窝网络和互联网架构中发挥关键作用。通过在非峰值需求实例期间巧妙地存储支持支持的网络实体中最流行的内容,缓存可以在高峰期期间使网络基础架构以及最终用户受益。在此上下文中,在网络实体上分发有限的存储容量,请呼吁分散缓存方案。许多实用缓存系统涉及连接到多个叶节点的父缓存节点以提供用户文件请求。为了模拟父节点和叶节点的缓​​存决策之间的双向交互式影响,提出了加强学习(RL)框架。为了处理大的连续状态空间,追求可扩展的深度RL方法。新颖的方法依赖于超深Q-Network来学习Q函数,从而以在线方式获得最佳缓存策略。强化具有学习和适应未知叶节点的未知政策的父节点以及文件请求的时空动态演化,导致通过数值测试的证实性能显着的缓存性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号