首页> 外文期刊>IEEE Transactions on Cognitive Communications and Networking >Redundant Sniffer Deployment for Multi-Channel Wireless Network Forensics With Unreliable Conditions
【24h】

Redundant Sniffer Deployment for Multi-Channel Wireless Network Forensics With Unreliable Conditions

机译:具有不可靠条件的多通道无线网络取证的冗余嗅探器部署

获取原文
获取原文并翻译 | 示例

摘要

Network forensics refers to monitoring and analysis of network traffic for the purpose of information gathering, legal evidence, or intrusion detection. Wireless sniffers are usually deployed to collect PHY/MAC-layer information to trace abnormal wireless traffic. For multi-channel wireless networks, it becomes problematic to allocate each sniffer an appropriate monitoring channel due to the limited number of sniffers. This leads to the sniffer-channel assignment (SCA) problem that has been mostly studied assuming error-free channel conditions or known behavior of wireless users. In this paper, we study the SCA problem with more general settings. In particular, we introduce redundant sniffer deployment to combat against the unreliable channel conditions. This can be formulated as a non-linear integer program with the aim of maximizing the number of captured data packets. We propose both centralized and distributed algorithms to determine an optimal strategy. For unknown user behaviors, we formulate the redundant SCA problem as a multi-armed bandit problem and develop an online learning policy to find a balance between the exploitation, i.e., accuracy, and exploration, i.e., coverage, in channel monitoring. Simulation results reveal that the redundant sniffer deployment, though sacrificing the exploration opportunities in the learning process, is robust against the uncertainty of user activities and provides the optimal performance in terms of sensing accuracy and monitoring coverage.
机译:网络取证是指网络流量的监测和分析,以获取信息收集,法律证据或入侵检测。通常部署无线嗅探器以收集PHY / MAC层信息以跟踪异常无线流量。对于多通道无线网络,由于嗅探器数量有限的嗅探器,将每个嗅探器分配适当的监视信道成为有问题。这导致了嗅探通道分配(SCA)问题,这些问题主要是假设无差错的信道条件或无线用户的已知行为。在本文中,我们研究了更多常规设置的SCA问题。特别是,我们将冗余的嗅探器部署引入打击不可靠的信道条件。这可以作为非线性整数程序制定,其目的是最大化捕获的数据包的数量。我们提出集中式和分布式算法来确定最佳策略。对于未知的用户行为,我们将冗余SCA问题作为多武装强盗问题,并在线学习策略开发在线学习策略,以在信道监测中找到利用,即准确性和探索之间的平衡。仿真结果表明,冗余嗅探器部署虽然牺牲了学习过程中的勘探机会,但对用户活动的不确定性具有稳健性,并且在感测准确度和监测覆盖范围方面提供最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号