首页> 外文期刊>IEEE Transactions on Cognitive Communications and Networking >Deep Learning for Launching and Mitigating Wireless Jamming Attacks
【24h】

Deep Learning for Launching and Mitigating Wireless Jamming Attacks

机译:深度学习,用于发起和缓解无线干扰攻击

获取原文
获取原文并翻译 | 示例

摘要

An adversarial machine learning approach is introduced to launch jamming attacks on wireless communications and a defense strategy is presented. A cognitive transmitter uses a pre-trained classifier to predict the current channel status based on recent sensing results and decides whether to transmit or not, whereas a jammer collects channel status and ACKs to build a deep learning classifier that reliably predicts the next successful transmissions and effectively jams them. This jamming approach is shown to reduce the transmitter's performance much more severely compared with random or sensing-based jamming. The deep learning classification scores are used by the jammer for power control subject to an average power constraint. Next, a generative adversarial network is developed for the jammer to reduce the time to collect the training dataset by augmenting it with synthetic samples. As a defense scheme, the transmitter deliberately takes a small number of wrong actions in spectrum access (in form of a causative attack against the jammer) and therefore prevents the jammer from building a reliable classifier. The transmitter systematically selects when to take wrong actions and adapts the level of defense to mislead the jammer into making prediction errors and consequently increase its throughput.
机译:介绍了一种对抗性机器学习方法,以对无线通信发起干扰攻击,并提出了一种防御策略。认知发射机使用预先训练的分类器根据最近的传感结果预测当前信道状态并决定是否进行传输,而干扰器收集信道状态和ACK来构建深度学习分类器,以可靠地预测下一次成功传输和有效地堵塞了他们。与基于随机或基于感测的干扰相比,这种干扰方法显示出将严重降低发射机的性能。干扰器将深度学习分类得分用于受平均功率约束的功率控制。接下来,为干扰器开发了一个生成对抗网络,以通过使用合成样本扩充训练数据集来减少收集训练数据集的时间。作为一种防御方案,发射机在频谱访问中故意采取少量错误措施(以对干扰器的因果攻击的形式),从而防止干扰器构建可靠的分类器。发射机系统地选择何时采取错误的措施,并调整防御水平,以使干扰机误导预测错误,从而提高吞吐量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号