首页> 外文期刊>IEEE Transactions on Circuits and Systems >Steady-state analysis of a single-layer perceptron based on a system identification model with bias terms
【24h】

Steady-state analysis of a single-layer perceptron based on a system identification model with bias terms

机译:基于带有偏差项的系统识别模型的单层感知器的稳态分析

获取原文
获取原文并翻译 | 示例

摘要

A stochastic analysis is presented of the steady-state convergence properties of a single-layer perceptron for Gaussian input signals. A system identification formulation is presented whereby the desired response signal (+or-1) is modeled by an unknown linear FIR system F plus an unknown bias, followed by a signum function nonlinearity. The perceptron nonlinearity is based on the error function, which implements the signum function as a special case, and it also includes a bias adjustment. It is demonstrated that the converged adaptive weights of the perceptron are proportional to F, and the proportionality constant is infinite when the bias terms are set to zero. If the bias terms are both nonzero, the converged perceptron weights have a unique finite solution determined by the bias factor magnitudes.
机译:提出了针对高斯输入信号的单层感知器的稳态收敛特性的随机分析。提出了一种系统识别公式,其中所需的响应信号(+或-1)由未知的线性FIR系统F加未知的偏置以及信号函数非线性来建模。感知器非线性基于误差函数,该误差函数将信号函数作为一种特殊情况实现,并且还包括偏差调整。证明了感知器的收敛自适应权重与F成正比,并且当偏置项设置为零时,比例常数是无限的。如果偏置项均非零,则收敛的感知器权重具有由偏置因数幅度确定的唯一有限解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号