首页> 外文期刊>IEEE Transactions on Circuits and Systems >A neural net based architecture for the segmentation of mixed gray-level and binary pictures
【24h】

A neural net based architecture for the segmentation of mixed gray-level and binary pictures

机译:基于神经网络的混合灰度和二进制图像分割算法

获取原文
获取原文并翻译 | 示例

摘要

A neural-net-based architecture is proposed to perform segmentation in real time for mixed gray-level and binary pictures. In this approach, the composite picture is divided into 16*16 pixel blocks, which are identified as character blocks or image blocks on the basis of a dichotomy measure computed by an adaptive 16*16 neural net. For compression purposes, each image block is further divided into 4*4 subblocks and, similar to the classical block truncation coding (BTC) scheme, a one-bit nonparametric quantizer is used to encode 16*16 character and 4*4 image blocks. In this case, however, the binary map and quantizer levels are obtained through a neural net segmentor over each block. The efficiency of the neural segmentation in terms of computational speed, data compression, and quality of the compressed picture is demonstrated. The effect of weight quantization is also discussed. VLSI implementations of such adaptive neural nets in CMOS technology are described and simulated in real time for a maximum block size of 256 pixels.
机译:提出了一种基于神经网络的体系结构,可以对混合的灰度级图像和二进制图像进行实时分割。在这种方法中,将合成图片划分为16 * 16像素块,根据自适应16 * 16神经网络计算出的二分法,将其识别为字符块或图像块。出于压缩目的,每个图像块被进一步分为4 * 4子块,类似于经典块截断编码(BTC)方案,一位非参数量化器用于编码16 * 16字符和4 * 4图像块。但是,在这种情况下,通过神经网络分段或每个块上的二进制映射和量化级别。演示了神经分割在计算速度,数据压缩和压缩图片质量方面的效率。还讨论了权重量化的效果。针对256个像素的最大块大小,实时描述和仿真了CMOS技术中此类自适应神经网络的VLSI实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号