首页> 外文期刊>IEEE Transactions on Circuits and Systems. I, Regular Papers >Robustness and perturbation analysis of a class of nonlinearsystems with applications to neural networks
【24h】

Robustness and perturbation analysis of a class of nonlinearsystems with applications to neural networks

机译:一类非线性系统的鲁棒性和摄动分析及其在神经网络中的应用

获取原文
获取原文并翻译 | 示例

摘要

Studies the robustness properties of a large class of nonlinear systems by addressing the following question: given a nonlinear system with specified asymptotically stable equilibria, under what conditions will a perturbed model of the system possess asymptotically stable equilibria that are close (in distance) to the asymptotically stable equilibria of the unperturbed system? In arriving at the results, the authors establish robustness stability results for the perturbed systems considered, and determine conditions that ensure the existence of asymptotically stable equilibria of the perturbed system that are near the asymptotically stable equilibria of the original unperturbed system. These results involve quantitative estimates of the distance between the corresponding equilibrium points of the unperturbed and perturbed systems. The authors apply the above results in the qualitative analysis of a large class of artificial neural networks
机译:通过解决以下问题来研究一大类非线性系统的鲁棒性:给定具有指定渐近稳定平衡的非线性系统,在什么条件下该系统的扰动模型将具有接近(在距离上)渐近稳定的平衡扰动系统的渐近稳定平衡?在得出结果时,作者为所考虑的扰动系统建立了鲁棒稳定性结果,并确定了确保存在扰动系统的渐近稳定平衡的条件,该平衡点接近于原始不受扰动系统的渐近稳定平衡。这些结果涉及对未扰动系统和扰动系统的相应平衡点之间距离的定量估计。作者将以上结果应用于大型人工神经网络的定性分析中

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号