首页> 外文期刊>IEEE Transactions on Circuits and Systems. I, Regular Papers >Autonomous cellular neural networks: a unified paradigm for patternformation and active wave propagation
【24h】

Autonomous cellular neural networks: a unified paradigm for patternformation and active wave propagation

机译:自主细胞神经网络:用于模式形成和有源波传播的统一范例

获取原文
获取原文并翻译 | 示例

摘要

This tutorial paper proposes a subclass of cellular neural networks (CNN) having no inputs (i.e., autonomous) as a universal active substrate or medium for modeling and generating many pattern formation and nonlinear wave phenomena from numerous disciplines, including biology, chemistry, ecology, engineering, and physics. Each CNN is defined mathematically by its cell dynamics (e.g., state equations) and synaptic law, which specifies each cell's interaction with its neighbors. We focus on reaction-diffusion CNNs having a linear synaptic law that approximates a spatial Laplacian operator. Such a synaptic law can be realized by one or more layers of linear resistor couplings. An autonomous CNN made of third-order universal cells and coupled to each other by only one layer of linear resistors provides a unified active medium for generating trigger (autowave) waves, target (concentric) waves, spiral waves, and scroll waves. When a second layer of linear resistors is added to couple a second capacitor voltage in each cell to its neighboring cells, the resulting CNN can be used to generate various turing patterns
机译:本教程论文提出了一种不带输入(即自主)的细胞神经网络(CNN)的子类,作为通用的主动基质或介质,用于建模和生成来自众多学科的许多模式形成和非线性波现象,包括生物学,化学,生态学,工程和物理。每个CNN均通过其细胞动力学(例如状态方程)和突触定律在数学上进行定义,突触定律指定每个细胞与其相邻细胞的相互作用。我们关注具有近似空间拉普拉斯算子的线性突触定律的反应扩散CNN。可以通过一层或多层线性电阻器耦合来实现这种突触定律。由三阶通用单元构成并且仅通过一层线性电阻器彼此耦合的自主CNN提供了统一的有源介质,用于生成触发波(自动波),目标波(同心波),螺旋波和涡旋波。当添加第二层线性电阻器以将每个单元中的第二个电容器电压耦合到其相邻单元时,所得的CNN可用于生成各种图腾模式

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号