首页> 外文期刊>IEEE Transactions on Circuits and Systems. I, Regular Papers >Boundary values methods for time-domain simulation of power systemdynamic behavior
【24h】

Boundary values methods for time-domain simulation of power systemdynamic behavior

机译:电力系统动态行为时域仿真的边界值方法

获取原文
获取原文并翻译 | 示例

摘要

Time-domain solution of a large set of coupled algebraic and ordinary differential equations is an important tool for many applications in power system analysis. The urgent need for online applications as well as the necessity of integrating transient and long-term analysis in a unique code is the main motivation for developing more reliable and fast algorithms. In this paper, a class of algorithms which exploits the so-called parallel-in-time formulation is considered. These algorithms, developed to run on vector/parallel computers, also give the opportunity to develop new integration rules sharing interesting properties. Parallel-in-time boundary value methods (BVMs) are proposed for implementation in power system transient stability analysis. These methods are characterized by some advantages such as: the possibility to have high accuracy; to use efficiently the same method for stable and unstable problems; to treat stiff problems; and to be implemented efficiently on vector/parallel computers. Their application to the solution of linear differential algebraic equations (DAEs) has been proposed in the mathematical literature. In this paper, the authors extend their use to nonlinear DAEs and demonstrate the existence and uniqueness of the numerical solution as well as the convergence properties of the proposed algorithms. The theoretical results are utilized for the implementation of Newton/relaxation algorithms on a vector/parallel computer. Test results on a realistic network characterized by 662 buses and 91 generators are reported
机译:大量耦合的代数方程和常微分方程组的时域解是电力系统分析中许多应用的重要工具。迫切需要在线应用程序,以及将瞬态和长期分析集成到唯一代码中的必要性,这是开发更可靠,更快速算法的主要动机。在本文中,考虑了一类利用所谓的并行时间表示法的算法。这些在矢量/并行计算机上运行的算法也为开发共享有趣特性的新集成规则提供了机会。提出了并行时间边界值方法(BVM),用于电力系统暂态稳定分析。这些方法具有一些优点,例如:具有很高的准确性;有效地使用相同的方法处理稳定和不稳定的问题;处理严峻的问题;并在向量/并行计算机上有效地实现。在数学文献中已经提出了它们在线性微分代数方程(DAE)求解中的应用。在本文中,作者将它们的应用扩展到非线性DAE,并证明了数值解的存在性和唯一性以及所提出算法的收敛性。理论结果被用于在矢量/并行计算机上实现牛顿/松弛算法。报告了在以662条总线和91个发电机为特征的真实网络上的测试结果

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号