首页> 外文期刊>IEEE Transactions on Circuits and Systems. 1 >Recurrent neural networks for solving linear inequalities and equations
【24h】

Recurrent neural networks for solving linear inequalities and equations

机译:求解线性不等式和方程的递归神经网络

获取原文
获取原文并翻译 | 示例

摘要

This paper presents two types of recurrent neural networks, continuous-time and discrete-time ones, for solving linear inequality and equality systems. In addition to the basic continuous-time and discrete-time neural-network models, two improved discrete-time neural networks with faster convergence rate are proposed by use of scaling techniques. The proposed neural networks can solve a linear inequality and equality system, can solve a linear program and its dual simultaneously, and thus extend and modify existing neural networks for solving linear equations or inequalities. Rigorous proofs on the global convergence of the proposed neural networks are given. Digital realization of the proposed recurrent neural networks are also discussed.
机译:本文提出了两种类型的递归神经网络,连续时间网络和离散时间网络,用于求解线性不等式和等式系统。除了基本的连续时间和离散时间神经网络模型外,还通过使用缩放技术提出了两个具有更快收敛速度​​的改进离散时间神经网络。所提出的神经网络可以求解线性不等式和等式系统,可以同时求解线性程序及其对偶,从而扩展和修改了现有的神经网络以求解线性方程或不等式。给出了所提出的神经网络的全局收敛性的严格证明。还讨论了所提出的递归神经网络的数字实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号