首页> 外文期刊>IEEE Transactions on Circuits and Systems. I, Regular Papers >Convergent regions of the Newton homotopy method for nonlinearsystems: theory and computational applications
【24h】

Convergent regions of the Newton homotopy method for nonlinearsystems: theory and computational applications

机译:牛顿非线性系统的同伦方法的收敛区域:理论和计算应用

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces the concept of the convergent region of a solution of a general nonlinear equation using the Newton homotopy method. The question of whether an initial guess converges to the solution of our interest using the Newton homotopy method is investigated. It is shown that convergent regions of the Newton homotopy method are equal to stability regions of a corresponding Newton dynamic system. A necessary and sufficient condition for the adjacency of two solutions using the Newton homotopy method is derived. An algebraic characterization of a convergent region and its boundary for a large class of nonlinear systems is derived. This characterization is explicit and computationally feasible. A numerical method to determine the convergent region and to establish simple criteria to avoid revisits of the same solutions from different initial guesses is developed. It is shown that for general nonlinear systems or gradient systems, it is computationally infeasible to construct a set of initial guesses which converge to the set of all type-one equilibrium points on the stability boundary of a stable equilibrium point xs from a finite number of function values and derivatives near xs using the Newton homotopy method. Several examples are applied to illustrate the theoretical developments
机译:本文采用牛顿同伦方法介绍了一个一般非线性方程解的收敛区域的概念。使用牛顿同伦方法研究了初始猜测是否收敛到我们感兴趣的解的问题。结果表明,牛顿同伦方法的收敛区域等于相应的牛顿动力学系统的稳定区域。推导了使用牛顿同伦方法对两个解进行邻接的充要条件。推导了一大类非线性系统收敛区域及其边界的代数表征。这种表征是明确的并且在计算上是可行的。开发了一种确定收敛区域并建立简单准则以避免从不同的初始猜测重新访问相同解的数值方法。结果表明,对于一般的非线性系统或梯度系统,从有限数量的方程组中构​​造出一组初始猜测,以收敛到稳定平衡点xs的稳定边界上所有类型一的平衡点的集合,在计算上是不可行的。使用牛顿同伦方法计算xs附近的函数值和导数。举几个例子说明理论发展

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号