首页> 外文期刊>IEEE Transactions on Circuits and Systems. I, Regular Papers >Constrained Shortest Link-Disjoint Paths Selection: A Network Programming Based Approach
【24h】

Constrained Shortest Link-Disjoint Paths Selection: A Network Programming Based Approach

机译:约束最短链路不相交路径选择:一种基于网络编程的方法

获取原文
获取原文并翻译 | 示例

摘要

Given a graph G with each link in the graph associated with two positive weights, cost and delay, we consider the problem of selecting a set of k link-disjoint paths from a node s to another node t such that the total cost of these paths is minimum and that the total delay of these paths is not greater than a specified bound. This problem, to be called the constrained shortest link-disjoint path (CSDP(k)) problem, can be formulated as an integer linear programming (ILP) problem. Relaxing the integrality constraints results in an upper bounded linear programming problem. We first show that the integer relaxations of the CSDP(k) problem and a generalized version of this problem to be called the generalized CSDP (GCSDP (k)) problem (in which each path is required to satisfy a specified bound on its delay) both have the same optimal objective value. In view of this, we focus our work on the relaxed form of the CSDP(k) problem (RELAX-CSDP(k)). We study RELAX-CSDP(k) from the primal perspective using the revised simplex method of linear programming. We discuss different issues such as formulas to identify entering and leaving variables, anti-cycling strategy, computational time complexity etc., related to an efficient implementation of our approach. We show how to extract from an optimal solution to RELAX-CSDP(k) a set of k link-disjoint s-t paths which is an approximate solution to the original CSDP(k) problem. We also derive bounds on the quality of this solution with respect to the optimum. We present simulation results that demonstrate that our algorithm is faster than currently available approaches. Our simulation results also indicate that in most cases the individual delays of the paths produced starting from RELAX-CSDP(k) do not deviate in a significant way from the individual path delay requirements of the GCSDP(k) problem.
机译:给定一个图G,并且图中的每个链接与两个正权重,成本和延迟相关联,我们考虑选择从节点s到另一个节点t的一组k条链路不相交路径的问题,以使这些路径的总成本的最小值,并且这些路径的总延迟不大于指定范围。可以将此问题称为约束最短链路不相交路径(CSDP(k))问题,可以表述为整数线性规划(ILP)问题。放宽完整性约束将导致上限线性规划问题。我们首先显示CSDP(k)问题的整数松弛和该问题的广义版本,称为广义CSDP(GCSDP(k))问题(其中,每个路径都必须满足其延迟上的指定限制)两者具有相同的最佳目标值。鉴于此,我们将工作重点放在CSDP(k)问题的松弛形式(RELAX-CSDP(k))上。我们使用修正的线性规划单纯形法从原始的角度研究RELAX-CSDP(k)。我们讨论与有效实施方法有关的不同问题,例如用于识别进入和离开变量的公式,防循环策略,计算时间复杂度等。我们展示了如何从RELAX-CSDP(k)的最优解中提取一组k条链路不相交的s-t路径,这是对原始CSDP(k)问题的一种近似解。我们还得出关于最佳解决方案质量的界限。我们提供的仿真结果表明,我们的算法比当前可用的方法更快。我们的仿真结果还表明,在大多数情况下,从RELAX-CSDP(k)开始产生的路径的单个延迟不会显着偏离GCSDP(k)问题的单个路径延迟要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号