首页> 外文期刊>Circuits and Systems I: Regular Papers, IEEE Transactions on >A Counterexample to “ Positive Realness Preserving Model Reduction With ${cal H}_{infty}$ Norm Error Bounds”
【24h】

A Counterexample to “ Positive Realness Preserving Model Reduction With ${cal H}_{infty}$ Norm Error Bounds”

机译:“用$ {cal H} _ {infty} $范数误差界线减少正实数保留模型”的反例

获取原文
获取原文并翻译 | 示例

摘要

We provide a counterexample to the ${cal H}_{infty}$ error bound for the difference of a positive real transfer function and its positive real balanced truncation stated in “Positive realness preserving model reduction with ${cal H}_{infty}$ norm error bounds,” IEEE Trans. Circuits Syst, I, Fundam. Theory Appl., vol. 42, no. 1, pp. 23–29 (1995). The proof of the error bound is based on a lemma from an earlier paper, “A tighter relative-error bound for balanced stochastic truncation,” Syst. Control Lett., vol. 14, no. 4, 307–317 (1990), which we also demonstrate is false by our counterexample. The main result of this paper was already known in the literature to be false. We state a correct ${cal H}^{infty}$ error bound for the difference of a proper positive real transfer function and its positive real balanced truncation and also an error bound in the gap metric.
机译:我们提供了$ {cal H} _ {infty} $错误边界的反例,该误差界限为正实传递函数及其正实平衡截断的差异,详见“使用$ {cal H} _ {infty保持正实数的模型约简” } $规范误差范围,” IEEE Trans。电路系统,我,芬达姆。理论应用,第一卷。 42号1,第23–29页(1995年)。误差界限的证明是基于Syst的早期论文中的一个引理,即“平衡随机截断的更严格的相对误差界限”。控制函,卷。 14号4,307–317(1990),我们也通过反例证明了它是错误的。在文献中已经知道该论文的主要结果是错误的。对于正确的正实传递函数及其正实平衡截断的差,我们还给出了正确的$ {cal H} ^ {infty} $误差界限,并且在差距度量中也存在误差界限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号