首页> 外文期刊>Circuits and Systems I: Regular Papers, IEEE Transactions on >The Sampling Theorem With Constant Amplitude Variable Width Pulses
【24h】

The Sampling Theorem With Constant Amplitude Variable Width Pulses

机译:恒定幅度可变宽度脉冲的采样定理

获取原文
获取原文并翻译 | 示例

摘要

This paper proves a novel sampling theorem with constant amplitude and variable width pulses. The theorem states that any bandlimited baseband signal within $pm$0.637 can be represented by a pulsewidth modulation (PWM) waveform with unit amplitude. The number of pulses in the waveform is equal to the number of Nyquist samples and the peak constraint is independent of whether the waveform is two-level or three-level. The proof of the sampling theorem uses a simple iterative technique that is guaranteed to converge to the exact PWM representation whenever it exists. The paper goes on to develop a practical matrix based iterative technique to generate the PWM waveform that is guaranteed to converge exponentially. The peak constraint in the theorem is only a sufficient condition. In fact, many signals with higher peaks, e.g., lower than Nyquist frequency sinusoids, can be accurately represented by a PWM waveform.
机译:本文证明了一种新颖的具有恒定幅度和可变宽度脉冲的采样定理。定理指出,在$ pm $ 0.637之内的任何带限基带信号都可以用单位幅度的脉宽调制(PWM)波形表示。波形中的脉冲数等于奈奎斯特采样数,并且峰值约束与波形是两电平还是三电平无关。采样定理的证明使用了一种简单的迭代技术,该技术可以保证在存在PWM表示时收敛到精确的PWM表示。本文继续开发一种实用的基于矩阵的迭代技术来生成可保证以指数形式收敛的PWM波形。定理中的峰值约束仅仅是一个充分条件。实际上,许多具有较高峰值(例如低于奈奎斯特频率正弦波)的信号可以由PWM波形准确表示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号