首页> 外文期刊>Circuits and Systems I: Regular Papers, IEEE Transactions on >The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission
【24h】

The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission

机译:基于耦合模式磁共振无线电力传输的电路理论

获取原文
获取原文并翻译 | 示例

摘要

Inductive coupling is a viable scheme to wirelessly energize devices with a wide range of power requirements from nanowatts in radio frequency identification tags to milliwatts in implantable microelectronic devices, watts in mobile electronics, and kilowatts in electric cars. Several analytical methods for estimating the power transfer efficiency (PTE) across inductive power transmission links have been devised based on circuit and electromagnetic theories by electrical engineers and physicists, respectively. However, a direct side-by-side comparison between these two approaches is lacking. Here, we have analyzed the PTE of a pair of capacitively loaded inductors via reflected load theory (RLT) and compared it with a method known as coupled-mode theory (CMT). We have also derived PTE equations for multiple capacitively loaded inductors based on both RLT and CMT. We have proven that both methods basically result in the same set of equations in steady state and either method can be applied for short- or midrange coupling conditions. We have verified the accuracy of both methods through measurements, and also analyzed the transient response of a pair of capacitively loaded inductors. Our analysis shows that the CMT is only applicable to coils with high quality factor $(Q)$ and large coupling distance. It simplifies the analysis by reducing the order of the differential equations by half compared to the circuit theory.
机译:电感耦合是一种可行的方案,可以无线供电给具有广泛功率要求的设备,从射频识别标签中的纳瓦到植入式微电子设备中的毫瓦,移动电子产品中的瓦数以及电动汽车中的千瓦。电气工程师和物理学家分别基于电路和电磁理论,设计了几种估算跨感应电力传输链路的电力传输效率(PTE)的分析方法。但是,这两种方法之间缺乏直接的并排比较。在这里,我们通过反射负载理论(RLT)分析了一对电容负载电感器的PTE,并将其与称为耦合模式理论(CMT)的方法进行了比较。我们还基于RLT和CMT得出了多个电容负载电感器的PTE方程。我们已经证明,这两种方法在稳态下基本上会产生相同的方程组,并且任何一种方法都可以应用于短程或中程耦合条件。我们已经通过测量验证了这两种方法的准确性,并且还分析了一对容性负载电感器的瞬态响应。我们的分析表明,CMT仅适用于品质因数(Q)$和耦合距离大的线圈。与电路理论相比,它可以将微分方程的阶数减少一半,从而简化了分析过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号