首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >Compressed Level Crossing Sampling for Ultra-Low Power IoT Devices
【24h】

Compressed Level Crossing Sampling for Ultra-Low Power IoT Devices

机译:超低功耗IoT设备的压缩电平交叉采样

获取原文
获取原文并翻译 | 示例

摘要

Level crossing sampling (LCS) is a power-efficient analog-to-digital conversion scheme for spikelike signals that arise in many Internet of Things-enabled automotive and environmental monitoring applications. However, LCS scheme requires a dedicated time-to-digital converter with large dynamic range specifications. In this paper, we present a compressed LCS that exploits the signal sparsity in the time domain. At the compressed sampling stage, a continuous-time ternary encoding scheme converts the amplitude variations into a ternary timing signal that is captured in a digital random sampler. At the reconstruction stage, a low-complexity split-projection least squares (SPLSs) signal reconstruction algorithm is presented. The SPLS splits random projections and utilizes a standard least squares approach that exploits the ternary-valued amplitude distribution. The SPLS algorithm is hardware friendly, can be run in parallel, and incorporates a low-cost k-term approximation scheme for matrix inversion. The SPLS hardware is analyzed, designed, and implemented in FPGA, achieving the highest data throughput and the power efficiency compared with the prior arts. Simulations of the proposed sampler in an automotive collision warning system demonstrate that the proposed compressed LCS can be very power efficient and robust to wireless interference, while achieving an approximately eightfold data volume compression when compared with Nyquist sampling approaches.
机译:电平穿越采样(LCS)是一种高能效的模数转换方案,用于在许多启用了物联网的汽车和环境监测应用中出现的尖峰信号。但是,LCS方案需要具有大动态范围规格的专用时间数字转换器。在本文中,我们提出了一种压缩的LCS,它利用了时域中的信号稀疏性。在压缩采样阶段,连续时间三进制编码方案将幅度变化转换为在数字随机采样器中捕获的三进制定时信号。在重建阶段,提出了一种低复杂度的分裂投影最小二乘(SPLSs)信号重建算法。 SPLS分割随机投影并利用标准的最小二乘法,该方法利用三值振幅分布。 SPLS算法对硬件友好,可以并行运行,并结合了用于矩阵求逆的低成本k项近似方案。 SPLS硬件在FPGA中进行了分析,设计和实现,与现有技术相比,实现了最高的数据吞吐量和功率效率。在汽车碰撞预警系统中对拟议的采样器进行的仿真表明,与Nyquist采样方法相比,拟议的压缩LCS可以非常省电且对无线干扰具有鲁棒性,同时实现大约八倍的数据量压缩。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号