首页> 外文期刊>Circuits and Systems I: Regular Papers, IEEE Transactions on >ADEPOS: A Novel Approximate Computing Framework for Anomaly Detection Systems and its Implementation in 65-nm CMOS
【24h】

ADEPOS: A Novel Approximate Computing Framework for Anomaly Detection Systems and its Implementation in 65-nm CMOS

机译:ADEPOS:一个新颖的异常检测系统的近似计算框架及其在65-NM CMOS中实现

获取原文
获取原文并翻译 | 示例

摘要

To overcome the energy and bandwidth limitations of traditional IoT systems, "edge computing" or information extraction at the sensor node has become popular. However, now it is important to create very low energy information extraction or pattern recognition systems. In this paper, we present an approximate computing method to reduce the computation energy of a specific type of IoT system used for anomaly detection (e.g. in predictive maintenance, epileptic seizure detection, etc). Termed as Anomaly Detection Based Power Savings (ADEPOS), our proposed method uses low precision computing and low complexity neural networks at the beginning when it is easy to distinguish healthy data. However, on the detection of anomalies, the complexity of the network and computing precision are adaptively increased for accurate predictions. We show that ensemble approaches are well suited for adaptively changing network size. To validate our proposed scheme, a chip has been fabricated in UMC 65nm process that includes an MSP430 microprocessor along with an on-chip switching mode DC-DC converter for dynamic voltage and frequency scaling. Using NASA bearing dataset for machine health monitoring, we show that using ADEPOS we can achieve 8.95X saving of energy along the lifetime without losing any detection accuracy. The energy savings are obtained by reducing the execution time of the neural network on the microprocessor.
机译:为了克服传统物联网系统的能量和带宽限制,传感器节点处的“边缘计算”或信息提取已经流行。但是,现在创建非常低的能量信息提取或模式识别系统非常重要。在本文中,我们提出了一种近似计算方法,以减少用于异常检测的特定类型的IOT系统的计算能量(例如,在预测性维持,癫痫癫痫发作检测等中)。被称为基于异常的检测的功率节省(ADEPOS),我们所提出的方法在开始时使用低精度计算和低复杂性神经网络,当时易于区分健康数据。然而,在检测异常的情况下,用于准确预测,网络和计算精度的复杂性得到适应性地增加。我们表明集合方法非常适合自适应地改变网络尺寸。为了验证我们所提出的方案,在UMC 65NM过程中制造了一种芯片,其包括MSP430微处理器以及用于动态电压和频率缩放的片上开关模式DC-DC转换器。使用NASA轴承数据集进行机器健康监控,我们展示了使用ADEPOS,我们可以沿着寿命达到8.95倍的能量,而不会失去任何检测精度。通过减少微处理器上神经网络的执行时间来获得节能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号