首页> 外文期刊>Circuits and Systems I: Regular Papers, IEEE Transactions on >Low-Energy Voice Activity Detection via Energy-Quality Scaling From Data Conversion to Machine Learning
【24h】

Low-Energy Voice Activity Detection via Energy-Quality Scaling From Data Conversion to Machine Learning

机译:低能量语音活动通过从数据转换到机器学习的能量质量缩放检测

获取原文
获取原文并翻译 | 示例

摘要

In this work, voice activity detection (VAD) systems with system-level energy-quality (EQ) scaling are investigated. Compared to prior single-knob EQ scaling, multiple EQ knobs are selectively inserted into the entire signal chain from end to end. EQ knobs are dynamically co-optimized to minimize energy for a given quality target. The analysis shows that system-level EQ optimization provides several benefits and has interesting implications on the performance of machine learning-based classification, as exemplified by decision trees in this work. First, it can make quality degradation more graceful than single-knob, allowing for more aggressive energy reduction under a given quality target, while retaining the ability to operate at full quality. Also, proper system-level EQ optimization enhances fitting in machine learning-based systems (e.g., decision tree-based), suppressing both underfitting and overfitting. The analysis also shows that context-specific retraining significantly improves quality and resolves fitting issues, especially at low input SNR. Measurements on a 28nm testchip show that system-level EQ scaling can reduce energy by up to 3.5X at 2% accuracy degradation in 10-dB noise, compared to full quality. Iso-technology comparison shows that the minimum energy of 51.9 nJ/frame is lower than prior art by 1.9-74.4X at comparable speechon-speech hit rates.
机译:在这项工作中,研究了具有系统级能量质量(EQ)缩放的语音活动检测(VAD)系统。与先前单旋钮EQ缩放相比,从端到端选择性地插入多个EQ旋钮。 EQ旋钮动态共同优化,以最大限度地减少给定质量目标的能量。分析表明,系统级别的EQ优化提供了几种优势,并且对基于机器学习的分类的性能具有有趣的影响,如在这项工作中的决策树的例子所示。首先,它可以使质量下降比单旋钮更加优雅,允许在给定的质量目标下更具侵略性的能量,同时保留以全质量运行的能力。此外,适当的系统级EQ优化增强了基于机器学习的系统(例如,决策树的),抑制了底层和过度装箱。分析还表明,上下文刷新显着提高了质量并解决了拟合问题,尤其是在低输入SNR处。 28nm TestChip的测量表明,与全质量相比,系统级别的EQ缩放可以将能量降低2%的精度降低高达3.5倍。 ISO-Technology的比较表明,51.9 NJ /帧的最小能量低于现有技术,在可比语音/非语言击中率下以1.9-74.4x降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号