首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >A Combined Arithmetic-High-Level Synthesis Solution to Deploy Partial Carry-Save Radix-8 Booth Multipliers in Datapaths
【24h】

A Combined Arithmetic-High-Level Synthesis Solution to Deploy Partial Carry-Save Radix-8 Booth Multipliers in Datapaths

机译:一种组合的算术高级综合解决方案,可在数据路径中部署部分进位保存的Radix-8 Booth乘法器

获取原文
获取原文并翻译 | 示例

摘要

While partial carry-save adders are easily designed by splitting them into several fragments working in parallel, the design of partial carry-save multipliers is more challenging. Prior approaches have proposed several solutions based on the radix-4 Booth recoding. This technique makes it possible to diminish the height of a multiplier by half, this being the most widespread option when designing multipliers, as only easy multiples are required. Larger radices provide further reductions at the expense of the appearance of hard multiples. Such is the case of radix-8 Booth multipliers, whose critical path is located at the generation of the 3X multiple. In order to mitigate this delay, in our prior works, we proposed to first decouple the 3X computation and introduce it in the dataflow graph, leveraging the available slack. Considering this, we then present a partial carry-save radix-8 Booth multiplier that receives three inputs in this format, namely, the multiplicand, the multiplier, and the 3X multiple. Moreover, the rest of the datapath is adapted to work in partial carry-save. In comparison with conventional radix-4 and radix-8 Booth-based datapaths, the proposal is able to diminish the execution time and energy consumption while benefits from the area reduction provided by the selection of radix 8. Furthermore, it outperforms prior state-of-the-art partial carry-save multipliers based on radix 4.
机译:通过将部分进位保留加法器拆分成几个并行工作的片段很容易设计,而部分进位保留乘法器的设计则更具挑战性。先前的方法已经提出了基于基数为4的Booth重新编码的几种解决方案。这种技术可以将乘法器的高度减半,这是设计乘法器时最广泛的选择,因为只需要简单的倍数即可。较大的半径提供了进一步的减小,但以硬倍数的出现为代价。 radix-8 Booth乘法器就是这种情况,其关键路径位于3X倍数的生成位置。为了减轻这种延迟,在我们之前的工作中,我们建议首先利用可用的余量将3X计算解耦,并将其引入数据流图中。考虑到这一点,我们然后给出了一个部分进位保存基数为8的Booth乘法器,该乘法器以这种格式接收三个输入,即被乘数,乘数和3X倍数。此外,数据路径的其余部分适用于部分进位保存。与传统的基于Bootx的radix-4和radix-8的数据路径相比,该提案能够减少执行时间和能耗,同时受益于通过选择radix 8所减少的面积。此外,它的性能优于先前的状态。基于基数4的先进的部分进位保留乘法器。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号