首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >A Robust Digital RRAM-Based Convolutional Block for Low-Power Image Processing and Learning Applications
【24h】

A Robust Digital RRAM-Based Convolutional Block for Low-Power Image Processing and Learning Applications

机译:用于低功耗图像处理和学习应用的稳健的基于数字RRAM的卷积模块

获取原文
获取原文并翻译 | 示例

摘要

Currently, there is a growing attention toward developing efficient hardware convolutional blocks for several applications such as computer vision or image processing. Recent works have shown that using binary values in convolutional blocks can considerably reduce the overall power consumption while achieving a high degree of accuracy. In parallel, some works employed resistive random-access memory (RRAM) as an in-memory accelerator to directly store the convolution kernels and perform analog dot product operations in the array, reducing the overall power consumption by limiting the number of memory accesses. However, such architecture is hampered by the limited resistance precision and large intrinsic variability of RRAMs. In this paper, we present a purely digital robust RRAM-based convolutional block using single-ended XNOR sensing capable of performing dot product operations in a single cycle. By carefully considering physical design and RRAM limitations at the 28-nm technology node, we show that at the circuit level, our architecture can tolerate a resistance window as low as 1.09, ensuring reliable operations even under a high RRAM variability (sigma/mu = 25% for a resistance window between both states around 50). When integrated in ISAAC, a state-of-the-art learning accelerator, our block can reduce the power by 2.7x while guaranteeing robust operations.
机译:当前,人们越来越关注为几种应用程序(例如计算机视觉或图像处理)开发有效的硬件卷积模块。最近的工作表明,在卷积块中使用二进制值可以显着减少总功耗,同时实现较高的精度。并行地,一些工作采用电阻性随机存取存储器(RRAM)作为内存中的加速器,以直接存储卷积内核并在阵列中执行模拟点积运算,从而通过限制存储器访问次数来降低总体功耗。但是,RRAM的有限电阻精度和较大的固有可变性阻碍了这种架构。在本文中,我们提出了一种使用单端XNOR感测的基于纯数字鲁棒RRAM的卷积模块,能够在单个周期内执行点积运算。通过仔细考虑28纳米技术节点处的物理设计和RRAM限制,我们表明,在电路级,我们的体系结构可以承受低至1.09的电阻窗口,即使在高RRAM可变性(sigma / mu =两种状态之间的电阻窗口在50%左右时为25%。当集成到最先进的学习加速器ISAAC中时,我们的模块可以将功耗降低2.7倍,同时又能保证强大的操作性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号