首页> 外文期刊>IEEE transactions on biomedical circuits and systems >Optimizing Volumetric Efficiency and Backscatter Communication in Biosensing Ultrasonic Implants
【24h】

Optimizing Volumetric Efficiency and Backscatter Communication in Biosensing Ultrasonic Implants

机译:优化生物传感超声植入物中的体积效率和反向散射通信

获取原文
获取原文并翻译 | 示例

摘要

Ultrasonic backscatter communication has gained popularity in recent years with the advent of deep-tissue sub-mm scale biosensing implants in which piezoceramic (piezo) resonators are used as acoustic antennas. Miniaturization is a key design goal for such implants to reduce tissue displacement and enable minimally invasive implantation techniques. Here, we provide a systematic design approach for the implant piezo geometry and operation frequency to minimize the overall volume of the implant. Optimal geometry of the implant piezo for backscatter communication is discussed and contrasted with that of power harvesting. A critical design aspect of an ultrasonic backscatter communication link is the response of the piezo acoustic reflection coefficient $Gamma$ with respect to the variable shunt impedance, $Z_E$ , of the implant uplink modulator. Due to the complexity of the piezo governing equations and multi-domain, electro-acoustical nature of the piezo, $Gamma (Z_E)$ has often been characterized numerically and the implant uplink modulator has been designed empirically resulting in sub-optimal performance in terms of data rate and linearity. Here, we present a SPICE friendly end-to-end equivalent circuit model of the channel as a piezo-IC co-simulation tool that incorporates inherent path losses present in a typical ultrasonic backscatter channel. To provide further insight into the channel response, we present experimentally validated closed form expressions for $Gamma (Z_E)$ under various boundary conditions. These expressions couple $Gamma$ to the commonly used Thevenin equivalent circuit model of the piezo, facilitating systematic design and synthesis of ultrasonic backscatter uplink modulators.
机译:近年来超声波散射通信随着深层组织亚mm鳞片生物传感植入物的出现而受到普及,其中压电陶瓷(压电)谐振器用作声天线。小型化是这种植入物的关键设计目标,以减少组织位移并实现微创植入技术。在这里,我们为植入物压电几何形状和操作频率提供系统的设计方法,以最小化植入物的整体体积。讨论了用于反向散射通信的植入物压电的最佳几何形状,并与功率收割的植入物。超声波反向散射通信链路的关键设计方面是压电声反射系数<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http ://www.w3.org/1999/xlink“> $ Gamma $ 关于变量分流阻抗,<内联-Formula XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ Z_E $ ,植入式上行链路调制器的。由于压电管理方程的复杂性和多域,压电的电声学性质,<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ gamma(z_e)$ 通常是特征在数值上和植入式上行链路调制器已经设计经验地导致数据速率和线性度方面的次优性能。在这里,我们向信道的Spice友好的端到端等效电路模型作为压电 - IC共仿真工具,该工具包含典型超声波反向散射信道中存在的固有路径损耗。要进一步了解频道响应,我们为<内联公式XMLNS提供了实验验证的封闭表达式:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http:/ / www.w3.org/1999/xlink"> $ Gamma(Z_E)$ 在各种边界条件下。这些表达式<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ gamma $ 到常用的母紫外线等效电路模型的压电,促进了超声波反向散射上行链路调制器的系统设计和合成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号