...
首页> 外文期刊>IEEE transactions on biomedical circuits and systems >Towards Intelligent Intracortical BMI (i^2BMI): Low-Power Neuromorphic Decoders That Outperform Kalman Filters
【24h】

Towards Intelligent Intracortical BMI (i^2BMI): Low-Power Neuromorphic Decoders That Outperform Kalman Filters

机译:对于智能的智能性的BMI(I ^ 2BMI):低功率的神经形态解码器,胜过卡尔曼过滤器

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Fully-implantable wireless intracortical Brain Machine Interfaces (iBMI) is one of the most promising next frontiers in the nascent field of neurotechnology. However, scaling the number of channels in such systems by another 10x is difficult due to power and bandwidth requirements of the wireless transmitter. One promising solution for that is to include more processing, up to the decoder, in the implant so that transmission data-rate is reduced drastically. Earlier work on neuromorphic decoder chips only showed classification of discrete states. We present results for continuous state decoding using a low-power neuromorphic decoder chip termed Spike-input Extreme LearningMachine (SELMA) that implements a nonlinear decoder without memory and its memory-based version with time-delayed bins, SELMAbins. We have compared SELMA, SELMA-bins against state-ofthe-art Steady-State Kalman Filter (SSKF), a linear decoder with memory, across two different datasets involving a total of 4 non-human primates (NHPs). Results show at least a 10% (20%) or more increase in the fraction of variance accounted for (FVAF) by SELMA (SELMA-bins) over SSKF across the datasets. Estimated energy consumption comparison shows SELMA (SELMA-bins) consuming approximate to 9 nJ/update (23 nJ/update) against SSKF's approximate to 7.4 nJ/update for an iBMI with a 10 degree of freedom control. Thus, SELMA yields better performance against SSKF while consuming energy in the same range as SSKF whereas SELMA-bins performs the best with moderately increased energy consumption, albeit far less than energy required for raw data transmission. This paves the way for reducing transmission data rates in future scaled iBMI systems.
机译:完全可植入的无线脑内脑机接口(IBMI)是NECOUTERECHNOLOGY中最受欢迎的下一个边界之一。然而,由于无线发射机的功率和带宽要求,难以通过另一个10x在这种系统中缩放的信道数。一个有希望的解决方案,即包括在植入物中包括更多的处理,直到解码器,使得传输数据速率大幅度减小。早期的神经形态解码器芯片的工作仅显示了离散状态的分类。我们使用低功率的神经胸解码器芯片定期的峰值输入的极端学习(Selma)来呈现连续状态解码的结果,该峰值输入极端学习机(Selma)实现非线性解码器,其基于存储器的版本,具有带时间延时的箱子Selmabins。我们已经对比较了Selma,用于最先进的稳态卡尔曼滤波器(SSKF),带有内存的线性解码器,横跨两个不同的数据集,涉及共4个非人类灵长类动物(NHPS)。结果表明SELMA(SELMA-BINS)在数据集上通过SSKF占(FVAF)的差异分数增加了10%(20%)或更多的增加。估计的能量消耗比较显示了Selma(Selma-in)近似于9 NJ /更新(23 NJ /更新),以防止SSKF的近似值为7.4 NJ /更新的IBMI,具有10度自由控制。因此,Selma对SSKF产生更好的性能,同时消耗与SSKF相同的范围内的能量,而Selma-Bins以中等增加的能量消耗执行最佳,尽管远低于原始数据传输所需的能量。这铺平了降低未来缩放IBMI系统中传输数据速率的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号