首页> 外文期刊>IEEE signal processing letters >Cumulative Rain Density Sensing Network for Single Image Derain
【24h】

Cumulative Rain Density Sensing Network for Single Image Derain

机译:综合图像累积雨藏传感网络

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on single image derain, which aims to restore clear image from single rain image. Through full consideration of different frequency information preservation and the complicated interactions between rain-streaks and background, a novel end-to-end cumulative rain-density sensing network (CRDNet) is proposed for adaptive rain-streaks removal. An effective W-Net with powerful learning ability is proposed as a key component to recover rain-invariant low-frequency signals. A cumulative rain-density classifier with a novel cost-sensitive label encoding strategy is proposed as an auxiliary network to improve discriminative power of extracted high-frequency rain-streaks through multi-task training. The proposed CRDNet has been compared with state-of-the-art methods on two public datasets. The quantitative and visual experimental results demonstrate that it can achieve excellent performance with great improvement. Related source code and models are available on github https://github.com/peylnog/CRDNet.
机译:本文重点介绍单一图像污骤,旨在从单雨图像恢复清晰的图像。通过对不同频率信息的完全考虑和雨条和背景之间的复杂相互作用,提出了一种新的端到端累积雨浓度传感网络(CRDNET),用于去除自适应雨条纹。提出了一种具有强大的学习能力的有效的W-Net作为恢复雨不变的低频信号的关键组件。累积雨浓度分类器具有新的成本敏感标签编码策略,作为辅助网络,通过多任务培训来改善提取的高频雨杆线的辨别力。拟议的CRDNET已与在两个公共数据集上与最先进的方法进行比较。定量和视觉实验结果表明,它可以实现优异的性能,具有巨大的改进。相关源代码和模型可在github https://github.com/peylnog/crdnet上找到。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号