首页> 外文期刊>IEEE signal processing letters >Cepstral domain segmental nonlinear feature transformations for robust speech recognition
【24h】

Cepstral domain segmental nonlinear feature transformations for robust speech recognition

机译:抗痉挛域分段非线性特性变换,用于鲁棒语音识别

获取原文
获取原文并翻译 | 示例

摘要

This letter presents a new segmental nonlinear feature normalization algorithm to improve the robustness of speech recognition systems against variations of the acoustic environment. An experimental study of the best delay-performance tradeoff is conducted within the AURORA-2 framework, and a comparison with two commonly used normalization algorithms is presented. Computationally efficient algorithms based on order statistics are also presented. One of them is based on linear interpolation between sampling quantiles, and the other one is based on a point estimation of the probability distribution. The reduction in the computational cost does not degrade the performance significantly.
机译:这封信呈现了一种新的分段非线性特征标准化算法,可以提高语音识别系统对声学环境变化的鲁棒性。在极光-2框架内进行了对最佳延迟性能权衡的实验研究,并提出了与两个常用的归一化算法的比较。还提出了基于顺序统计的计算高效算法。其中一个基于采样量码之间的线性插值,另一个基于概率分布的点估计。计算成本的减少不会显着降低性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号