首页> 外文期刊>IEEE signal processing letters >High resolution speech feature parametrization for monophone-based stressed speech recognition
【24h】

High resolution speech feature parametrization for monophone-based stressed speech recognition

机译:高分辨率语音特征参数化,用于基于单电话的强调语音识别

获取原文
获取原文并翻译 | 示例

摘要

This letter investigates the impact of stress on monophone speech recognition accuracy and proposes a new set of acoustic parameters based on high resolution wavelet analysis. The two parameter schemes are entitled wavelet packet parameters (WPP) and subband-based cepstral parameters (SBC). The performance of these features is compared to traditional Mel-frequency cepstral coefficients (MFCC) for stressed speech monophone recognition. The stressed speaking styles considered are neutral, angry, loud, and Lombard effect speech from the SUSAS database. An overall monophone recognition improvement of 20.4% and 17.2% is achieved for loud and angry stressed speech, with a corresponding increase in the neutral monophone rate of 9.9% over MFCC parameters.
机译:这封信调查了压力对单音电话语音识别精度的影响,并基于高分辨率小波分析提出了一组新的声学参数。这两个参数方案分别称为小波包参数(WPP)和基于子带的倒谱参数(SBC)。将这些功能的性能与传统的梅尔频率倒谱系数(MFCC)进行了比较,以进行语音单音识别。 SUSAS数据库中考虑的强调说话风格为中性,生气,大声和伦巴第效果的讲话。对于大声和愤怒的压力语音,单声道电话的总体识别能力提高了20.4%和17.2%,中性单声道电话的速率比MFCC参数相应提高了9.9%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号