首页> 外文期刊>IEEE signal processing letters >Edge-Guided Output Adaptor: Highly Efficient Adaptation Module for Cross-Vendor Medical Image Segmentation
【24h】

Edge-Guided Output Adaptor: Highly Efficient Adaptation Module for Cross-Vendor Medical Image Segmentation

机译:边缘引导输出适配器:用于跨供应商医学图像分割的高效自适应模块

获取原文
获取原文并翻译 | 示例

摘要

Supervised convolutional neural networks (CNNs) have demonstrated state-of-art performance in medical image segmentation tasks. However, the performance of a well-trained CNN on an independent dataset (e.g., different vendors, sequences) relies strongly on the distribution similarity, and may drop unexpectedly in case of distribution shift. To obtain a large amount of annotation from each new dataset for re-training the CNN is expensive and impractical. Adaptation algorithms to improve the CNN generaliza bility from source domain to target domain has significant practical value. In this work, we propose a highly efficient end-to-end domain adaptation approach, with left ventricle segmentation from cine MRI sequences as an example. We propose to perform domain adaptation in the output space where different domains share the strongest similarities. The core of this algorithm is a flexible and light output adaption module based on adversarial learning. Moreover, Canny edge detector is introduced to enhance model's attention to edges during adversarial learning. Comparative experiments were carried out using images from three major MR vendors (Philips, Siemens, and GE) as three domains. Our results demonstrated that the proposed method substantially improved the generalization of the trained CNN model from one vendor to other vendors without any additional annotation. Moreover, the ablation study proved that introducing Canny edge detector further refined the edge detection in segmentation. The proposed adaption is generic can be extended to other medical image segmentation problems.
机译:监督卷积神经网络(CNN)已证明在医学图像分割任务中具有最先进的性能。但是,训练有素的CNN在独立数据集(例如,不同的供应商,序列)上的性能在很大程度上取决于分布的相似性,并且在分布转移的情况下可能会意外下降。从每个新数据集中获取大量注释以重新训练CNN既昂贵又不切实际。从源域到目标域提高CNN泛化能力的自适应算法具有重要的实用价值。在这项工作中,我们提出了一种高效的端到端域自适应方法,以电影MRI序列的左心室分割为例。我们建议在输出空间中执行域自适应,其中不同的域具有最强的相似性。该算法的核心是基于对抗性学习的灵活轻便的输出自适应模块。此外,引入了Canny边缘检测器,以增强模型在对抗性学习过程中对边缘的关注。使用来自三个主要MR供应商(Philips,Siemens和GE)的图像作为三个域进行了比较实验。我们的结果表明,所提出的方法大大改善了经过训练的CNN模型从一个厂商到其他厂商的通用性,而没有任何其他注释。此外,消融研究证明,引入Canny边缘检测器可以进一步细分分割中的边缘检测。所提出的适应性是通用的,可以扩展到其他医学图像分割问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号