首页> 外文期刊>IEEE signal processing letters >Unsupervised Deep Hashing With Adaptive Feature Learning for Image Retrieval
【24h】

Unsupervised Deep Hashing With Adaptive Feature Learning for Image Retrieval

机译:带有自适应特征学习的无监督深度哈希用于图像检索

获取原文
获取原文并翻译 | 示例

摘要

The hashing method is widely used for large-scale image retrieval due to its low time and space complexity. However, the existing deep hashing methods are mainly designed for labeled datasets. Without supervised information, retrieval performance on unlabeled datasets is not guaranteed. In this letter, we propose a novel deep hashing approach for unsupervised image retrieval applications. The contributions are two-fold. First, the pseudolabels are generated using their global features aggregated from the pretrained network and employed as self-supervised information to optimize the objective function of training. Second, adaptive feature learning is used in this deep hashing framework to perform simultaneous hash function learning and global features learning in an unsupervised manner. The experimental results validated the effectiveness of the proposed method, obtaining state-of-the-art performances on several public datasets such as CIFAR-10, Holidays, and Oxford5k.
机译:散列方法由于其时间和空间复杂度低而被广泛用于大规模图像检索。但是,现有的深度哈希方法主要设计用于标记数据集。没有监督信息,就无法保证对未标记数据集的检索性能。在这封信中,我们提出了一种用于无监督图像检索应用程序的新颖的深度哈希方法。贡献是双重的。首先,伪标签是使用从预训练网络聚合的全局特征生成的,并用作自我监督信息以优化训练的目标功能。其次,在这种深哈希算法中使用了自适应特征学习,以无监督的方式执行了同时的哈希函数学习和全局特征学习。实验结果验证了该方法的有效性,在一些公共数据集(例如CIFAR-10,Holidays和Oxford5k)上获得了最新的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号