首页> 外文期刊>IEEE signal processing letters >Video Completion and Simultaneous Moving Object Detection for Extreme Surveillance Environments
【24h】

Video Completion and Simultaneous Moving Object Detection for Extreme Surveillance Environments

机译:极端监视环境下的视频完成和同时运动对象检测

获取原文
获取原文并翻译 | 示例

摘要

Since automated cleaning systems are less common in extreme surveillance environments, the accumulations of combustion fuels, dust, dirt, spider webs, etc., affect the visibility and clarity of the captured video data to different degrees resulting in incomplete (missing) video sequences. Grounded on this significant practical scenario, this letter proposes a scheme to concurrently complete the missing entries and detect moving objects with efficient background separation by formulating a single convex optimization problem developed and implemented in the tensor framework. The work is implemented as a unified scheme for concurrent video completion and moving object detection using twist spatio-temporal total variation to enhance the detection performance of the foreground while fitting the tensor nuclear norm minimization for efficient background separation with half thresholding applied on the tensor singular values. Moreover, the sparse variations that are part of the dynamic background are addressed using l(1/2) regularization. The formulated minimization problem is solved using the augmented Lagrangian method with an alternating direction strategy. The work also has computational benefits and the excellence of this method is revealed in the quantified performance evaluation against the compared approaches.
机译:由于自动清洁系统在极端监视环境中不太常见,因此燃烧燃料,灰尘,污垢,蜘蛛网等的堆积会在不同程度上影响所捕获视频数据的可见性和清晰度,从而导致视频序列不完整(丢失)。在此重要实际案例的基础上,这封信提出了一种方案,该方案可通过制定在张量框架中开发和实现的单个凸优化问题,来同时完成丢失的条目并以有效的背景分离来检测运动对象。该工作被实现为一个统一的方案,用于同时进行视频完成和使用扭曲时空总变化的运动对象检测,以增强前景的检测性能,同时使张量核范数最小化以实现有效的背景分离,并在张量奇异值上应用一半阈值价值观。此外,使用l(1/2)正则化处理作为动态背景一部分的稀疏变化。使用增强的拉格朗日方法和交替方向策略可以解决公式化的最小化问题。这项工作还具有计算上的好处,并且该方法的优越性在针对比较方法的量化性能评估中得以揭示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号