首页> 外文期刊>IEEE signal processing letters >A simple framework for spatio-temporal video segmentation and delayering using dense motion fields
【24h】

A simple framework for spatio-temporal video segmentation and delayering using dense motion fields

机译:使用密集运动场进行时空视频分割和延迟的简单框架

获取原文
获取原文并翻译 | 示例

摘要

To represent object movement, the conventional approach is to embed the motion information into parametric and/or statistical motion models. However, the inherent complexity of this description is ill suited for application requiring rapid and automatic, albeit significant, responses. Surveillance applications belong to this class and are emerging as the most active field of research in computer vision. For this purpose, we observe that the differential invariants obtained by dense optic flow are capable of accurately describing complex object motion without requiring setting up and initializing models. In this letter, we demonstrate the novel use of such motion descriptors for spatio-temporal object segmentation and delayering of sequences. Our results show the ability of this approach to describe simply and accurately differently moving objects and to be incorporated in segmentation processes that deliver a hierarchical description of object, producing evident improvements to the segmented objects while being computationally efficient.
机译:为了表示对象的运动,常规方法是将运动信息嵌入参数和/或统计运动模型中。然而,该描述的固有复杂性不适用于需要快速且自动的响应,尽管响应显着的应用。监视应用程序属于此类,并且正在成为计算机视觉研究中最活跃的领域。为此,我们观察到通过密集的光流获得的微分不变量能够准确地描述复杂的对象运动,而无需建立和初始化模型。在这封信中,我们演示了这种运动描述符在时空对象分割和序列延迟中的新颖用途。我们的结果表明,这种方法能够简单,准确地描述不同的运动对象,并被合并到分段过程中,该分段过程提供了对象的层次描述,从而对分段对象产生了明显的改进,同时计算效率很高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号