首页> 外文期刊>IEEE signal processing letters >Resource Constrained Stream Mining With Classifier Tree Topologies
【24h】

Resource Constrained Stream Mining With Classifier Tree Topologies

机译:具有分类器树拓扑的资源受限流挖掘

获取原文
获取原文并翻译 | 示例

摘要

Stream mining applications require the identification of several different attributes in data content and hence rely on a distributed set of cascaded statistical classifiers to filter and process the data dynamically. In this letter, we introduce a novel methodology for configuring cascaded classifier topologies, specifically binary classifier trees, with optimized operating points after jointly considering the misclassification cost of each end-to-end class of interest in the tree, the resource constraints for every classifier, and the confidence level of each data object that is classified. By configuring multiple operating points per classifier, we enable not only intelligent load shedding when resources are scarce but also intelligent replication of low confidence data across multiple edges when excess resources are available. Using a classifier tree constructed from support vector machine-based sports image classifiers, we verify huge cost savings and discuss how different classifier placements and costs can influence the gains obtained by various algorithms.
机译:流挖掘应用程序需要识别数据内容中的几个不同属性,因此需要依靠分布式的级联统计分类器集来动态过滤和处理数据。在这封信中,我们在共同考虑树中每个感兴趣的端到端类的误分类成本以及每个分类器的资源约束之后,介绍了一种用于配置级联分类器拓扑结构(特别是二进制分类器树)的新颖方法,具有优化的工作点,以及每个分类的数据对象的置信度。通过为每个分类器配置多个操作点,我们不仅可以在资源稀缺时智能地减少负载,而且还可以在可用资源过多时跨多个边缘智能地复制低置信度数据。使用基于支持向量机的运动图像分类器构造的分类器树,我们验证了巨大的成本节省,并讨论了不同的分类器位置和成本如何影响通过各种算法获得的收益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号