首页> 外文期刊>IEEE signal processing letters >Towards Signal-Based Instrumental Quality Diagnosis for Text-to-Speech Systems
【24h】

Towards Signal-Based Instrumental Quality Diagnosis for Text-to-Speech Systems

机译:迈向基于文本的语音系统的基于信号的仪器质量诊断

获取原文
获取原文并翻译 | 示例

摘要

In this letter, the first steps toward the development of a signal-based instrumental quality measure for text-to-speech (TTS) systems are described. Hidden Markov models (HMM), trained on naturally-produced speech, serve as artificial text- and speaker-independent reference models against which synthesized speech signals are assessed. A normalized log-likelihood measure, computed between perceptual features extracted from synthesized speech and a gender-dependent HMM reference model, is proposed and shown to be a reliable parameter for multidimensional TTS quality diagnosis. Experiments with subjectively scored synthesized speech data show that the proposed measure attains promising estimation performance for quality dimensions labeled overall impression, listening effort, naturalness, continuity/fluency, and acceptance.
机译:在这封信中,描述了面向文本到语音(TTS)系统的基于信号的仪器质量度量开发的第一步。隐马尔可夫模型(HMM)经过自然产生的语音训练后,可作为独立于文本和说话者的参考模型,对合成的语音信号进行评估。提出了从合成语音中提取的感知特征与性别相关的HMM参考模型之间计算出的归一化对数似然度量,该度量被证明是多维TTS质量诊断的可靠参数。对主观评分的合成语音数据进行的实验表明,对于标记为整体印象,聆听努力,自然性,连续性/流利度和接受度的质量维度,该提议的方法获得了有希望的评估性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号