首页> 外文期刊>IEEE signal processing letters >SAR Image Despeckling Using a Convolutional Neural Network
【24h】

SAR Image Despeckling Using a Convolutional Neural Network

机译:使用卷积神经网络的SAR图像去斑

获取原文
获取原文并翻译 | 示例

摘要

Synthetic aperture radar (SAR) images are often contaminated by a multiplicative noise known as speckle. Speckle makes the processing and interpretation of SAR images difficult. We propose a deep-learning-based approach called, image despeckling convolutional neural network (ID-CNN), for automatically removing speckle from the input noisy images. In particular, ID-CNN uses a set of convolutional layers along with batch normalization and rectified linear unit activation function and a componentwise division residual layer to estimate speckle and it is trained in an end-to-end fashion using a combination of Euclidean loss and total variation loss. Extensive experiments on synthetic and real SAR images show that the proposed method achieves significant improvements over the state-of-the-art speckle reduction methods.
机译:合成孔径雷达(SAR)图像经常被称为斑点的乘性噪声污染。斑点使SAR图像的处理和解释变得困难。我们提出了一种基于深度学习的方法,称为图像去斑点卷积神经网络(ID-CNN),用于自动从输入噪声图像中消除斑点。特别是,ID-CNN使用一组卷积层以及批处理归一化和整流线性单元激活函数以及按分量划分的残差层来估计散斑,并且使用欧几里得损失和余弦的组合以端到端的方式对其进行训练。总变化损失。在合成和真实SAR图像上的大量实验表明,与最新的斑点减少方法相比,该方法取得了显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号