首页> 外文期刊>IEEE signal processing letters >Does Vector Gaussian Approximation After LMMSE Filtering Improve the LLR Quality?
【24h】

Does Vector Gaussian Approximation After LMMSE Filtering Improve the LLR Quality?

机译:LMMSE滤波后的矢量高斯近似会改善LLR质量吗?

获取原文
获取原文并翻译 | 示例

摘要

In this letter, we investigate the extrinsic log-likelihood ratio (LLR) computation of a soft-input soft-output equalizer used in a turbo equalization system. The optimum LLRs are obtained by a maximum a posteriori -based equalizer, which may be computationally expensive. Thus, several reduced-complexity equalizers have been proposed. The most promising approach first applies linear minimum mean square error filtering to the channel output and then computes the LLRs based on a scalar Gaussian approximation of the filter output. The resulting LLRs can be viewed as an approximation of the optimum LLRs. In order to improve the approximation, we investigate the computation of the LLRs based on a vector Gaussian approximation of the filter output, which incorporates the correlation between the estimated symbols after filtering. Surprisingly, it turns out that both approaches, although their derivation is different, give the same LLRs. We verify this remarkable result through an analytical proof and bit error ratio simulations.
机译:在这封信中,我们研究了涡轮均衡系统中使用的软输入软输出均衡器的外部对数似然比(LLR)计算。最佳LLR通过最大的基于后验的均衡器获得,这在计算上可能是昂贵的。因此,已经提出了几种降低复杂度的均衡器。最有前途的方法首先将线性最小均方误差滤波应用于通道输出,然后基于滤波器输出的标量高斯近似来计算LLR。可以将所得的LLR视为最佳LLR的近似值。为了提高近似度,我们研究了基于滤波器输出的矢量高斯近似的LLR的计算,该向量将滤波后的估计符号之间的相关性纳入其中。令人惊讶的是,事实证明这两种方法虽然推导不同,但给出的LLR相同。我们通过分析证明和误码率仿真来验证这一非凡的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号