首页> 外文期刊>IEEE signal processing letters >Interpolation of Head-Related Transfer Functions Using Manifold Learning
【24h】

Interpolation of Head-Related Transfer Functions Using Manifold Learning

机译:使用流形学习对与头部相关的传递函数进行插值

获取原文
获取原文并翻译 | 示例

摘要

We propose a new head-related transfer function (HRTF) interpolation method using Isomap, a nonlinear dimensionality reduction technique. First, we construct a single manifold for all subjects across both azimuth and elevation angles through the construction of an intersubject graph (ISG) that includes important prior knowledge of the HRTFs such as correlations across individuals, directions, and ears. Then, for a new direction, we predict its corresponding low-dimensional HRTF by interpolating over same subject low-dimensional measured HRTFs. Finally, we use a local neighborhood mapping in the manifold to reconstruct the high-dimensional HRTF from measured HRTFs of all subjects. We show that a single manifold representation obtained through the ISG is a powerful way to allow measured HRTFs from different subjects to contribute for reconstructing the HRTFs for new directions. Moreover, our results suggest that a small number of spatial measurements capture most of acoustical properties of HRTFs. Finally, our approach outperforms other linear and nonlinear dimensionality reduction techniques such as principal component analysis, locally linear embedding, and Laplacian eigenmaps.
机译:我们使用非线性降维技术Isomap提出了一种新的与头部相关的传递函数(HRTF)插值方法。首先,我们通过构建对象间图形(ISG)为所有对象在方位角和仰角上构建单个流形,该图形间包括HRTF的重要先验知识,例如跨个人,方向和耳朵的相互关系。然后,对于一个新的方向,我们通过对相同主题的低维测量HRTF进行插值来预测其对应的低维HRTF。最后,我们在流形中使用局部邻域映射,以从所有受试者的测量HRTF重建高维HRTF。我们表明,通过ISG获得的单个流形表示法是一种强大的方法,可以使来自不同主题的测得HRTF有助于为新方向重建HRTF。此外,我们的结果表明,少量的空间测量值可以捕获HRTF的大部分声学特性。最后,我们的方法优于其他线性和非线性降维技术,例如主成分分析,局部线性嵌入和Laplacian特征图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号