首页> 外文期刊>Robotics & Automation Magazine, IEEE >Terrain Reconstruction of Glacial Surfaces : Robotic Surveying Techniques
【24h】

Terrain Reconstruction of Glacial Surfaces : Robotic Surveying Techniques

机译:冰川表面的地形重建:机器人测量技术

获取原文
获取原文并翻译 | 示例

摘要

T he capability to monitor natural phenomena using mobile sensing is a benefit to the Earth science community, given the potentially large impact that humans have on naturally occurring processes. Such phenomena can be readily monitored using networks of mobile sensor nodes that are tasked to regions of interest by scientists. In our article, we hone in on a very specific domain, elevation changes in glacial surfaces, to demonstrate a concept applicable to any spatially distributed phenomena (e.g., temperature or humidity). Our article leverages the sensing of a vision-based odometry system and the design of robotic surveying navigation rules to reconstruct scientific areas of interest, with the goal of monitoring elevation changes in glacial regions. The reconstruction methodology presented makes use of Gaussian process (GP) regression to combine sparse visual landmarks extracted from the glacial scenery into a dense topographic map. Further, this method allows for the natural inclusion of a priori terrain knowledge, such as existing digital elevation models. Results from this system are presented from a three-dimensional (3-D) glacial simulation modeled after actual field trials on Alaskan glaciers. Additionally, we introduce a theory behind spatial coverage, in the context of sampling, as achieved by an intelligently navigating agent. Finally, we validate the output from our methodology and provide results and show that the reconstructed terrain error complies with acceptable mapping standards found in the scientific community.
机译:考虑到人类对自然发生过程的潜在巨大影响,使用移动感应监测自然现象的能力对地球科学界来说是一项好处。可以使用由科学家分配到感兴趣区域的移动传感器节点网络轻松监视此类现象。在我们的文章中,我们深入研究了冰川表面的高度变化,以展示适用于任何空间分布现象(例如温度或湿度)的概念。我们的文章利用基于视觉的里程表系统的感应和机器人测量导航规则的设计来重建感兴趣的科学领域,以监视冰川区域的海拔变化为目标。提出的重建方法利用高斯过程(GP)回归将从冰川风景中提取的稀疏视觉地标组合成密集的地形图。此外,该方法允许自然地包含先验地形知识,例如现有的数字高程模型。该系统的结果来自在阿拉斯加冰川的实际田间试验后建模的三维(3-D)冰川模拟。此外,我们在采样的背景下介绍了由智能导航代理实现的空间覆盖背后的理论。最后,我们验证了方法论的结果并提供了结果,并表明重建的地形误差符合科学界公认的可接受的制图标准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号