首页> 外文期刊>IEEE Robotics and Automation Letters >Numerical Approach to Reachability-Guided Sampling-Based Motion Planning Under Differential Constraints
【24h】

Numerical Approach to Reachability-Guided Sampling-Based Motion Planning Under Differential Constraints

机译:微分约束下基于可达性的基于采样的运动规划的数值方法

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a new method for motion planning under differential constraints by incorporating a numerically solved discretized representation of reachable state space for faster state sampling and nearest neighbor searching. The reachable state space is solved for offline and stored into a “reachable map” which can be efficiently applied in online planning. State sampling is performed only over states encompassed by the reachable map to reduce the number of unsuccessful motion validity checking queries. The nearest neighbor distance function is revised such that only reachable states are considered, with states which are unreachable or only reachable beyond a designated time horizon disregarded. This method is generalized for application to any control system, and thus can be used for vehicle models where analytical solutions cannot be found. Greater improvement is expected for more constrained systems where motion checking cost is relatively high. Simulation results are discussed for case studies on a holonomic model and a Dubins car model, both with maximum speed limitation and time included as a dimension in the configuration space, where planning speed (measured by tree growth rate) can be improved through reachability guidance in each system by at least a factor of 3 and 9, respectively.
机译:本文提出了一种新的运动计划方法,该方法通过结合数值求解的可到达状态空间的离散化表示法来实现差分约束下的运动规划,以实现更快的状态采样和最近邻居搜索。解决了可到达状态空间的离线问题,并将其存储到“可到达地图”中,该地图可有效地应用于在线计划中。仅对可达地图所涵盖的状态执行状态采样,以减少不成功的运动有效性检查查询的数量。修订最近邻居距离函数,以便仅考虑可达状态,而忽略或仅在指定时间范围内无法达到的状态。该方法被普遍应用于任何控制系统,因此可用于无法找到分析解决方案的车辆模型。对于运动检查成本相对较高的更受约束的系统,有望实现更大的改进。讨论了针对完整模型和Dubins汽车模型的案例研究的仿真结果,其中最大速度限制和时间都作为配置空间中的一个维度,其中可通过以下方面的可达性指导来提高计划速度(以树的生长速度衡量)每个系统的系数分别至少为3和9。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号