首页> 外文期刊>IEEE Journal on Selected Areas in Communications >Lightweight Machine Learning for Efficient Frequency-Offset-Aware Demodulation
【24h】

Lightweight Machine Learning for Efficient Frequency-Offset-Aware Demodulation

机译:轻量级机器学习可实现有效的频偏感知解调

获取原文
获取原文并翻译 | 示例
           

摘要

Carrier frequency offset (CFO) arises from the intrinsic mismatch between the oscillators of a wireless transmitter and the corresponding receiver, as well as their relative motion (i.e., Doppler effect). Despite advances in CFO estimation and tracking techniques, estimation errors are still present. Residual CFO creates a time-varying phase error, which degrades the decoder's performance by increasing the symbol error rate. The impact is particularly visible in dense constellation maps (e.g., high-order QAM modulation), often used in modern wireless systems such as 5G NR, 802.11ax, and mmWave, as well as in physical security techniques, such as modulation obfuscation (MO). In this paper, we first derive the probability distribution function for the residual CFO under Gaussian noise. Using this distribution, we compute the maximum-likelihood demodulation boundaries for OFDM signals in a non-closed form. For modulation schemes with unequal-amplitude reference constellation points (e.g., 16-QAM and higher, APSK, etc.), the "optimal" boundaries have irregular shapes, and more importantly, they depend on the time since the last CFO correction instance, e.g., reception of frame preamble. To approximate the optimal boundaries and provide a practical (real-time) demodulation scheme, we explore machine learning techniques, specifically, support vector machine (SVM). Our SVM approach exhibits better accuracy and lower complexity in the test phase than other state-of-the-art machine-learning approaches. As a case study, we apply our CFO-aware demodulation to enhance the performance of a MO technique. Our analytical results show a gain of up to 3 dB over conventional demodulation schemes, which exceeds 3 dB in complete system simulations. Finally, we implement our scheme on USRPs and experimentally corroborate our analytic and simulation-based findings.
机译:载波频率偏移(CFO)是由无线发射器和相应接收器的振荡器之间的固有失配以及它们的相对运动(即多普勒效应)引起的。尽管CFO估算和跟踪技术取得了进步,但估算误差仍然存在。残余CFO会产生随时间变化的相位误差,该误差会通过增加符号错误率而降低解码器的性能。在密集的星座图(例如,高阶QAM调制)中,尤其是在现代无线系统(例如5G NR,802.11ax和mmWave)中,以及物理安全技术(例如,调制混淆)中经常使用这种影响时,这种影响尤其明显。 )。在本文中,我们首先导出高斯噪声下残余CFO的概率分布函数。使用此分布,我们以非封闭形式计算OFDM信号的最大似然解调边界。对于具有不等幅参考星座点(例如16-QAM和更高,APSK等)的调制方案,“最佳”边界具有不规则形状,更重要的是,它们取决于自上一次CFO校正实例以来的时间,例如,接收帧前导。为了逼近最佳边界并提供实用的(实时)解调方案,我们探索了机器学习技术,特别是支持向量机(SVM)。与其他最新的机器学习方法相比,我们的SVM方法在测试阶段具有更高的准确性和更低的复杂性。作为案例研究,我们将CFO感知解调应用于增强MO技术的性能。我们的分析结果表明,与传统的解调方案相比,增益高达3 dB,在完整的系统仿真中,增益超过3 dB。最后,我们在USRP上实施我们的计划,并在实验上证实了我们基于分析和模拟的发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号