首页> 外文期刊>IEEE Journal on Multiscale and Multiphysics Computational Techniques >Berry Phase, Berry Connection, and Chern Number for a Continuum Bianisotropic Material From a Classical Electromagnetics Perspective
【24h】

Berry Phase, Berry Connection, and Chern Number for a Continuum Bianisotropic Material From a Classical Electromagnetics Perspective

机译:从经典电磁学角度看连续相各向异性材料的贝里相,贝里连接和陈恩数

获取原文
获取原文并翻译 | 示例

摘要

The properties that quantify photonic topological insulators (PTIs), Berry phase, Berry connection, and Chern number, are typically obtained by making analogies between classical Maxwell's equations and the quantum mechanical Schrödinger equation, writing both in Hamiltonian form. However, the aforementioned quantities are not necessarily quantum in nature, and for photonic systems they can be explained using only classical concepts. Here, we provide a derivation and description of PTI quantities using classical Maxwell's equations, demonstrate how an electromagnetic mode can acquire Berry phase, and discuss the ramifications of this effect. We consider several examples, including wave propagation in a biased plasma, and radiation by a rotating isotropic emitter. These concepts are discussed without invoking quantum mechanics and can be easily understood from an engineering electromagnetics perspective.
机译:量化光子拓扑绝缘体(PTI),Berry相,Berry连接和Chern数的属性通常是通过在经典的麦克斯韦方程和量子力学薛定ding方程之间进行类比而获得的,均以哈密顿形式书写。但是,上述数量本质上不一定是量子,对于光子系统,只能使用经典概念来解释它们。在这里,我们使用经典的麦克斯韦方程式提供了对PTI量的推导和描述,演示了电磁模式如何获取Berry相,并讨论了这种影响的后果。我们考虑几个示例,包括在偏置等离子体中的波传播以及旋转各向同性发射器的辐射。无需调用量子力学即可讨论这些概念,并且可以从工程电磁学的角度轻松理解这些概念。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号