首页> 外文期刊>Geoscience and Remote Sensing Letters, IEEE >Comparative Study of Intrinsic Dimensionality Estimation and Dimension Reduction Techniques on Hyperspectral Images Using K-NN Classifier
【24h】

Comparative Study of Intrinsic Dimensionality Estimation and Dimension Reduction Techniques on Hyperspectral Images Using K-NN Classifier

机译:使用K-NN分类器的高光谱图像本征维估计和降维技术的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, hyperspectral remote sensors are readily available for monitoring the Earth's surface with high spectral resolution. The high-dimensional nature of the data collected by such sensors not only increases computational complexity but also can degrade classification accuracy. To address this issue, dimensionality reduction (DR) has become an important aid to improving classifier efficiency on these images. The common approach to decreasing dimensionality is feature extraction by considering the intrinsic dimensionality (ID) of the data. A wide range of techniques for ID estimation (IDE) and DR for hyperspectral images have been presented in the literature. However, the most effective and optimum methods for IDE and DR have not been determined for hyperspectral sensors, and this causes ambiguity in selecting the appropriate techniques for processing hyperspectral images. In this letter, we discuss and compare ten IDE and six DR methods in order to investigate and compare their performance for the purpose of supervised hyperspectral image classification by using $K$-nearest neighbor (K-NN). Due to the nature of K-NN classifier that uses different distance metrics, a variety of distance metrics were used and compared in this procedure. This letter presents a review and comparative study of techniques used for IDE and DR and identifies the best methods for IDE and DR in the context of hyperspectral image analysis. The results clearly show the superiority of the hyperspectral signal subspace identification by minimum, second moment linear, and noise-whitened Harsanyi–Farrand–Chang estimators, also the principal component analysis and independent component analysis as DR techniques, and the norm L1 and Euclidean distance metrics to process hyperspectral imagery by using the K-NN classifier.
机译:如今,高光谱远程传感器已经可以用来以高光谱分辨率监视地球表面。由这种传感器收集的数据的高维性质不仅增加了计算复杂度,而且还降低了分类精度。为了解决此问题,降维(DR)已成为提高这些图像分类器效率的重要帮助。降低维数的常见方法是通过考虑数据的固有维数(ID)进行特征提取。文献中已经提出了用于高光谱图像的ID估计(IDE)和DR的各种技术。但是,对于高光谱传感器,尚未确定最有效,最理想的IDE和DR方法,这会导致在选择适当的技术来处理高光谱图像时产生歧义。在这封信中,我们讨论并比较了十种IDE方法和六种DR方法,以便通过使用$ K $最近邻(K-NN)进行监督和比较它们的性能,从而实现有监督的高光谱图像分类。由于使用不同距离度量的K-NN分类器的性质,在此过程中使用并比较了各种距离度量。这封信介绍了用于IDE和DR的技术的回顾和比较研究,并确定了在高光谱图像分析中用于IDE和DR的最佳方法。结果清楚地表明,通过最小二阶矩线性和噪声白Harsanyi-Farrand-Chang估计器,主成分分析和独立成分分析(作为DR技术)以及范数L1和欧氏距离,高光谱信号子空间识别的优势使用K-NN分类器来处理高光谱图像的指标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号