首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Assessment of Binary Coding Techniques for Texture Characterization in Remote Sensing Imagery
【24h】

Assessment of Binary Coding Techniques for Texture Characterization in Remote Sensing Imagery

机译:遥感影像中纹理特征的二进制编码技术评估

获取原文
获取原文并翻译 | 示例

摘要

This letter investigates the use of rotation invariant descriptors based on Local Binary Patterns (LBP) and Local Phase Quantization (LPQ) for texture characterization in the context of land-cover and land-use classification of Remote Sensing (RS) optical image data. Very high resolution images from the IKONOS-2 and Quickbird-2 orbital sensor systems covering different urban study areas were subjected to classification through an object-based approach. The experiments showed that the discrimination capacity of LBP and LPQ descriptors substantially increased when combined with contrast information. This work also proposes a novel texture descriptors assembled through the concatenation of the histograms of either LBP or LPQ descriptors and of the local variance estimates. Experimental analysis demonstrated that the proposed descriptors, though more compact, preserved the discrimination capacity of bi-dimensional histograms representing the joint distribution of textural descriptors and contrast information. Finally, the paper compares the discrimination capacity of the LBP- and LPQ-based textural descriptors with that of features derived from the Gray Level Co-occurrence Matrices (GLCM). The related experiments revealed a noteworthy superiority of LBP and LPQ descriptors over the GLCM features in the context of RS image data classification.
机译:这封信调查了在遥感(RS)光学图像数据的土地覆盖和土地利用分类的背景下,基于局部二进制模式(LBP)和局部相位量化(LPQ)的旋转不变描述符对纹理特征的使用。来自IKONOS-2和Quickbird-2轨道传感器系统的,覆盖不同城市研究区域的超高分辨率图像通过基于对象的方法进行了分类。实验表明,当与对比信息结合使用时,LBP和LPQ描述子的辨别能力大大提高。这项工作还提出了一种新颖的纹理描述符,它是通过LBP或LPQ描述符的直方图与局部方差估计值的组合而组装而成的。实验分析表明,所提出的描述符虽然更紧凑,但保留了表示纹理描述符和对比度信息的联合分布的二维直方图的辨别能力。最后,本文将基于LBP和LPQ的纹理描述符的鉴别能力与从灰度共生矩阵(GLCM)导出的特征的鉴别能力进行了比较。相关的实验表明,在RS图像数据分类的背景下,LBP和LPQ描述符比GLCM特征具有明显优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号