首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Reduction of Spectral Unmixing Uncertainty Using Minimum-Class-Variance Support Vector Machines
【24h】

Reduction of Spectral Unmixing Uncertainty Using Minimum-Class-Variance Support Vector Machines

机译:使用最小类方差支持向量机减少光谱解混不确定性

获取原文
获取原文并翻译 | 示例

摘要

Several spectral unmixing techniques using multiple endmembers for each class have been developed. Although they can address within-class spectral variability, their unmixing results may have low unmixing resolution when the within-class variation is large due to the associated high uncertainty. Therefore, it is critical to represent data in an effective feature space so that the endmember classes are compact with small variation. In this letter, a minimum-class-variance support vector machine (MCVSVM) is further developed to extend its functions for both classification and spectral unmixing. Moreover, analytical expressions for spectral unmixing resolution (SUR) are provided to measure the spectral unmixing uncertainty in the new feature space. The extended MCVSVM (e_MCVSVM) can improve SUR and reduce the spectral unmixing uncertainty as it can effectively maximize the between-class scatter while minimizing the within-class scatter. Experimental results show that the e_MCVSVM algorithm performs better in terms of the unmixing accuracy and the computation speed compared with the other algorithms (e.g., fully constrained least squares and endmember bundles) in both linearly separable and nonseparable cases. This newly proposed approach advances the linear spectral mixture analysis with greater speed and higher accuracy based on the SVM after the SUR is effectively characterized.
机译:对于每种类别,已经开发了几种使用多个末端成员的光谱解混技术。尽管它们可以解决类内光谱的可变性,但由于相关的高不确定性,当类内变化较大时,它们的解混结果可能具有较低的解混分辨率。因此,至关重要的是在有效的特征空间中表示数据,以使端成员类紧凑且变化很小。在这封信中,进一步开发了最小类方差支持向量机(MCVSVM),以扩展其功能,用于分类和频谱分解。此外,提供了光谱分解分辨率(SUR)的解析表达式,以测量新特征空间中的光谱分解不确定性。扩展的MCVSVM(e_MCVSVM)可以提高SUR并减少频谱分解的不确定性,因为它可以有效地最大化类间散射,同时又可以最小化类内散射。实验结果表明,在线性可分离和不可分离的情况下,e_MCVSVM算法在解混合精度和计算速度方面均优于其他算法(例如,完全约束的最小二乘和端构件束)。在对SUR进行有效表征之后,基于SVM,这种新提出的方法可以更快,更准确地推进线性光谱混合分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号