首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Rank-Based Local Self-Similarity Descriptor for Optical-to-SAR Image Matching
【24h】

Rank-Based Local Self-Similarity Descriptor for Optical-to-SAR Image Matching

机译:基于秩的局部自相似性描述符,用于光到SAR图像匹配

获取原文
获取原文并翻译 | 示例

摘要

Automatic optical-to-synthetic aperture radar (SAR) image matching is still a challenging task due to the existence of severe nonlinear radiometric differences between the images and the presence of strong speckles in the SAR images. To address this problem, we propose a novel feature descriptor called rank-based local self-similarity (RLSS) for optical-to-SAR image template matching. The RLSS descriptor is an improved version of the local self-similarity (LSS) descriptor, inspired by Spearman's rank correlation coefficient in statistics. It can describe the local shape properties of an image in a discriminable manner. To further improve the discriminability, a dense RLSS (DRLSS) descriptor is formed with a dense scheme by integrating the RLSS descriptors for multiple local regions into a dense sampling grid. Experimental results conducted based on the optical and SAR image pairs demonstrated that the proposed descriptor was robust to nonlinear radiometric differences and it outperformed two state-of-the-art descriptors [dense LSS (DLSS) and histogram of orientated phase congruency (HOPC)].
机译:自动光学合成孔径雷达(SAR)图像匹配仍然是一个具有挑战性的任务,因为图像之间的图像与SAR图像中的强斑点的存在存在严重的非线性辐射差异。为了解决这个问题,我们提出了一种新颖的特征描述符,称为基于秩的本地自我相似性(RLSS),用于光到SAR图像模板匹配。 RLSS描述符是局域自相似(LSS)描述符的改进版本,受Spearman的统计中的秩相关系数的启发。它可以以可歧应的方式描述图像的局部形状特性。为了进一步提高可辨性,通过将多个局部区域集成到密集采样网格中,通过将RLSS描述符集成到密集的采样网格中,形成具有密集方案的密集RLSS(DRLSS)描述符。基于光学和SAR图像对进行的实验结果表明,所提出的描述符对非线性辐射差异稳健,并且其优于两个最先进的描述符[致密LSS(DLSS)和定向相常数(HOPC)的直方图] 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号