首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Complex-Valued Full Convolutional Neural Network for SAR Target Classification
【24h】

Complex-Valued Full Convolutional Neural Network for SAR Target Classification

机译:用于SAR目标分类的复数型全卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

Complex-valued convolutional neural network (CV-CNN) has been presented in recent years. In this letter, CV full convolutional neural network (CV-FCNN) is proposed for synthetic aperture radar (SAR) target classification, which contains only convolution layers in the hidden layer. The purpose of replacing both the pooling and fully connected layers in CV-CNN with the convolution layers is to avoid complex pooling operation and prevent overfitting, respectively. Considering the label of target is always real-valued, the magnitude of the complex vector obtained from the last convolution layer is calculated before softmax classification in the output layer. Moreover, the back-propagation formula for each layer of CV-FCNN is presented in detail. Furthermore, the complex 1 x 1 convolution layer is added into CV-FCNN to learn the cross-channel information of feature maps. The experimental results show that the average accuracy can be improved using CV-FCNN, and it is further improved using CV-FCNN with the 1 x 1 convolution layer.
机译:近年来介绍了复数卷积神经网络(CV-CNN)。在这封信中,提出了CV全卷积神经网络(CV-FCNN),用于合成孔径雷达(SAR)目标分类,其仅包含隐藏层中的卷积层。用卷积层更换CV-CNN中的池和完全连接层的目的是避免复杂的汇集操作并分别防止过度拟合。考虑到目标的标签始终是真实值,在输出层中的SoftMax分类之前计算从最后卷积层获得的复数的大小。此外,详细介绍了每层CV-FCNN的背传播公式。此外,将复杂的1×1卷积层添加到CV-FCNN中以学习特征图的交叉通道信息。实验结果表明,使用CV-FCNN可以改善平均精度,并且使用具有1×1卷积层的CV-FCNN进一步改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号