首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Assessing the Usefulness of Iceberg Electromagnetic Backscatter Modeling Using a C-Band SAR Classifier
【24h】

Assessing the Usefulness of Iceberg Electromagnetic Backscatter Modeling Using a C-Band SAR Classifier

机译:使用C波段SAR分类器评估冰山电磁反散锻造建模的有用性

获取原文
获取原文并翻译 | 示例

摘要

This letter presents the validation of an electromagnetic (EM) backscatter model of icebergs at C-band by comparing the performances of target classifiers trained with both modeled and real synthetic aperture radar (SAR) data. Simulated SAR data were obtained in a combination of imaging beam modes and scene parameters to produce 216 simulated Sentinel-1 C-band SAR images. Parameters consisted of Sentinel-1 IW1 (33.1 degrees) and IW3 (43.1 degrees) beam modes with varying wind speed (5 and 10 m/s), wind direction (0 degrees, 45 degrees, and 90 degrees), and target orientation (0 degrees, 45 degrees, and 90 degrees). Simulations were created from an EM SAR simulator called GRECOSAR, which took 3-D profiles of iceberg and ship targets and parameters necessary to closely mimic the real scenes. 3-D models of three icebergs were captured in a field study off the coast of Bonavista, Newfoundland, and Labrador, Canada in June 2017. Three generic ship models were sourced from an online inventory and scaled to a size equivalent to that of the iceberg targets. Real SAR image data were drawn from in-house data set collected from a complementary research program. Classifiers including support vector machine (SVM), Random Forest (RanFor), k-nearest neighbor (kNN), and neural network (NN) were trained with targets from modeled SAR data and then gradually mixed with real SAR data. Target classifier performance from the modeled target data was shown to be similar to classifiers trained entirely from real SAR data. The similarity in accuracy provides an indication of the validity of the modeled SAR data for this specific application.
机译:本函数通过比较所建模和真实合成孔径雷达(SAR)数据的目标分类器的性能来介绍C频段的电磁(EM)反向散射模型。在成像波束模式和场景参数的组合中获得模拟SAR数据以产生216个模拟的哨声-1 C波段SAR图像。参数由Sentinel-1 IW1(33.1度)和IW3(43.1度)的光束模式组成,具有不同的风速(5和10m / s),风向(0度,45度和90度)和目标方向( 0度,45度和90度)。从名为Grecosar的EM SAR模拟器创建了模拟,该模拟器占据了三维冰山和船舶目标以及必要的参数,以密切模仿真实的场景。在2017年6月,在加拿大纽芬兰和拉布拉多州的海岸的一个野外研究中捕获了三个冰山的三维型号。三种通用船模型从在线库存中源,并扩大到相当于冰山的大小目标。从互补研究程序收集的内部数据集中绘制了真实的SAR图像数据。包括支持向量机(SVM),随机森林(RANFOR),K最近邻居(KNN)和神经网络(NN)的分类器,用来自建模的SAR数据的目标培训,然后逐渐与真实的SAR数据混合。从建模目标数据中的目标分类器性能显示与完全来自真实SAR数据的分类器类似。精度的相似性提供了本特定应用程序所建模的SAR数据的有效性的指示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号