首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >A New Crop Classification Method Based on the Time-Varying Feature Curves of Time Series Dual-Polarization Sentinel-1 Data Sets
【24h】

A New Crop Classification Method Based on the Time-Varying Feature Curves of Time Series Dual-Polarization Sentinel-1 Data Sets

机译:一种基于时间序列双极化哨声-1数据集的时变特征曲线的新作物分类方法

获取原文
获取原文并翻译 | 示例

摘要

Multitemporal Sentinel-1 data sets are suitable for high-precision agricultural classification mapping due to its short revisit period and dual-polarization channels. At present, more and more attention has been paid to the multitemporal classification methods with feature curve matching, because the time-varying polarimetric characteristics show great potential to crop classification. However, current methods only use the variation of single intensity feature, and the indicators for evaluating similarity have not considered the effect of the variable growing seasons of different parcels. Based on this, a new method with feature curve matching is proposed, which uses the combination of multiple features and applies the discrete Frechet distance and the Pearson distance to evaluate the similarity between two curves. The proposed method applies time-series Sentinel-1 images for crop classification in two study areas of Gansu province, China. The results show that the overall accuracies in two study areas of the proposed method are 94.98% and 90.20%, respectively. This method achieves higher classification accuracies, compared with the SVM classification method and some other methods with feature curve matching.
机译:由于其短暂的Revisit时期和双极化通道,多型哨声-1数据集适用于高精度农业分类映射。目前,具有特征曲线匹配的多立体分类方法,增加了越来越多的关注,因为时变的偏振特性显示出庄稼分类的巨大潜力。然而,当前方法仅使用单个强度特征的变化,并且评估相似性的指标不考虑不同包裹的可变生长季节的效果。基于此,提出了一种具有特征曲线匹配的新方法,它使用多个特征的组合,并应用离散的Freechet距离和Pearson距离来评估两条曲线之间的相似性。该方法在中国甘肃省两届研究领域应用了时间序列Sentinel-1图像进行作物分类。结果表明,拟议方法的两个研究领域的总体精度分别为94.98%和90.20%。与SVM分类方法和具有特征曲线匹配的一些其他方法相比,该方法达到了更高的分类精度。

著录项

  • 来源
    《IEEE Geoscience and Remote Sensing Letters》 |2020年第7期|1183-1187|共5页
  • 作者单位

    Cent South Univ Sch Geosci & Infophys Changsha 410083 Peoples R China|Minist Educ Key Lab Metallogen Predict Nonferrous Met & Geol Changsha 410083 Peoples R China;

    Cent South Univ Sch Geosci & Infophys Changsha 410083 Peoples R China|Minist Educ Key Lab Metallogen Predict Nonferrous Met & Geol Changsha 410083 Peoples R China;

    Cent South Univ Sch Geosci & Infophys Changsha 410083 Peoples R China|Minist Educ Key Lab Metallogen Predict Nonferrous Met & Geol Changsha 410083 Peoples R China;

    Cent South Univ Sch Geosci & Infophys Changsha 410083 Peoples R China|Minist Educ Key Lab Metallogen Predict Nonferrous Met & Geol Changsha 410083 Peoples R China;

    Cent South Univ Sch Geosci & Infophys Changsha 410083 Peoples R China|Minist Educ Key Lab Metallogen Predict Nonferrous Met & Geol Changsha 410083 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Agriculture; Feature extraction; Synthetic aperture radar; Image segmentation; Monitoring; Covariance matrices; Hidden Markov models; Crop classification; dual-polarization; feature curve;

    机译:农业;特征提取;合成孔径雷达;图像分割;监测;Coveriance矩阵;隐藏的马尔可夫模型;作物分类;双极化;特征曲线;特征曲线;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号