首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Compressive Hyperspectral Image Reconstruction Based on Spatial–Spectral Residual Dense Network
【24h】

Compressive Hyperspectral Image Reconstruction Based on Spatial–Spectral Residual Dense Network

机译:基于空间谱剩余密度致密网络的压缩高光谱图像重建

获取原文
获取原文并翻译 | 示例

摘要

A spatial-spectral residual dense network-based compressive hyperspectral image (HSI) reconstruction method is proposed in this letter. The proposed method contains two networks: residual dense network for hyperspectral image reconstruction (RDNHIR) and spectral difference reconstruction network (SDRN). The RDNHIR network can extract the local features and global hierarchical features by cascading features of all residual dense blocks (RDBs). Then, SDRN takes full advantage of the strong correlation between spectral adjacent bands to better preserve the spectral feature of HSI. Finally, the adjacent spectral difference regularization is introduced into the loss function to further improve the performance. The experimental results show that the proposed method has better reconstruction quality than other state-of-the-art reconstruction methods, especially in the spectral domain.
机译:在这封信中提出了一种基于空间谱剩余密度的基于网络的压缩高光谱图像(HSI)重建方法。该方法包含两个网络:用于高光谱图像重建(RDNHIR)和频谱差重建网络(SDRN)的剩余密度网络。 RDNHIR网络可以通过级联密集块(RDB)的级联功能来提取本地特征和全局层次特征。然后,SDRN充分利用光谱相邻带之间的强相关性,以更好地保留HSI的光谱特征。最后,将相邻的光谱差正则化被引入损耗功能以进一步提高性能。实验结果表明,该方法具有比其他最先进的重建方法更好的重建质量,特别是在光谱域中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号