首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Automatic and Unsupervised Water Body Extraction Based on Spectral-Spatial Features Using GF-1 Satellite Imagery
【24h】

Automatic and Unsupervised Water Body Extraction Based on Spectral-Spatial Features Using GF-1 Satellite Imagery

机译:基于使用GF-1卫星图像的光谱空间特征自动和无监督的水体提取

获取原文
获取原文并翻译 | 示例

摘要

Water body extraction from remote sensing imagery is an essential and nontrivial issue due to the complexity of the spectral characteristics of various kinds of water bodies and the redundant background information. An automatic multifeature water body extraction (MFWE) method integrating spectral and spatial features is proposed in this letter for water body extraction from GF-1 multispectral imagery in an unsupervised way. This letter first discusses a spatial feature index, called the pixel region index (PRI), to describe the smoothness in a local area surrounding a pixel. PRI is advantageous for assisting the normalized difference water index (NDWI) in detecting major water bodies, especially in urban areas. On the other hand, part of the water pixels near the borders may not be included in major water bodies, k-means clustering is subsequently conducted to cluster all the water pixels into the same group as a guide map. Finally, the major water bodies and the guide map are merged to obtain the final water mask. Our experimental results demonstrate that accurate water masks were achieved for all seven GF-1 imagery scenes examined. Three images with a complex background and water conditions were used to quantitatively compare the proposed method to NDWI thresholding and support vector machine classification, which verified the higher accuracy and effectiveness of the proposed method.
机译:由于各种水体的光谱特性和冗余背景信息的复杂性,来自遥感图像的水体提取是一个必不可少的问题。在这封信中提出了一种全自动多座水体提取(MFWE)方法,用于整合光谱和空间特征的用于以无监督的方式从GF-1多光谱图像提取水体提取。这封信首先讨论了称为像素区域索引(PRI)的空间特征索引,以描述围绕像素的局部区域中的平滑度。 PRI有利于协助归一化差水指数(NDWI)检测主要水体,特别是在城市地区。另一方面,边界附近的部分水像素可能不包括在主要水体中,随后进行K-Means聚类以将所有水像素聚在同一组中作为指导图。最后,主要水体和指导地图合并以获得最终的防水面膜。我们的实验结果表明,对于检查的所有七个GF-1图像场景,实现了准确的水面具。三个具有复杂背景和水条件的图像来定量地将所提出的方法与NDWI阈值化和支持向量机分类进行比较,这验证了所提出的方法的更高的精度和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号