首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Multilogit Prior-Based Gamma Mixture Model for Segmentation of SAR Images
【24h】

Multilogit Prior-Based Gamma Mixture Model for Segmentation of SAR Images

机译:用于SAR图像分割的多纲陀基于先前的伽马混合模型

获取原文
获取原文并翻译 | 示例

摘要

Synthetic Aperture Radar (SAR) has the capability of working in all weather conditions during day and night that make it attractive to be used for target detection and recognition purposes. However, it has the problem of speckling that is structured as multiplicative noise which makes the SAR data a complex image. The algorithms need to he sufficiently robust to speckle noise for the achievement of reliable segmentation from such complex images. In this letter, the first contribution is the development of a robust multilogit spatial interactive model as a categorical distribution. The categorical property of this approach makes it ideally suited to be used as a pixel-based prior to any finite mixture model. Second, multilogit spatial interactive gamma mixture model is developed which is based on this prior. Experimental results with synthetic and real images indicate that the proposed mixture model is highly effective in segmenting SAR images.
机译:合成孔径雷达(SAR)具有在白天和夜间的所有天气条件下工作的能力,使其具有用于目标检测和识别目的的吸引力。然而,它具有散斑的问题,其被构造为乘法噪声,这使得SAR数据成为复杂的图像。该算法需要足够强大地对斑点噪声来实现从这种复杂图像中的可靠分割。在这封信中,第一个贡献是作为一个分类分布的强大的多器件空间交互式模型的开发。该方法的分类性质使其理想地适合在任何有限混合模型之前用作基于像素的基于像素。其次,开发了多器件空间交互式伽马混合物模型,其基于此基于此。具有合成和实图像的实验结果表明所提出的混合物模型在分割SAR图像中具有高效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号